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AN OPTIMAL INTERPOLATION PROBLEM WITH HERMITE INFORMATION

IN THE SOBOLEV CLASS W n
1 ([−1, 1]) 1

Dandan Guo, Yongping Liu, and Guiqiao Xu

In this paper, we study the optimal interpolation problem in the Sobolev class Wn
1
([−1, 1]), n ∈ N, with

Hermite information. By some properties of spline functions, we proved that the Lagrange interpolation based

on the extreme points of Chebyshev polynomials is optimal for Wn
1 ([−1, 1]), and we obtained the approximation

error for the optimal interpolation problem.
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митовой информацией в классе Соболева Wn
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В данной работе изучается задача оптимальной интерполяции в классе Соболева Wn
1
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1. Introduction and definitions

The study of the best approximation problem is a very important research direction
in approximation theory. As an important branch of mathematics, the theory of function
approximation should be traced back to the famous theorem that continuous functions can be
approximated by polynomials established by Weierstrass in 1885 and the characteristic theorem
of the best approximation proposed by Chebyshev in 1859. In the 1950s, on the basis of
global approximation, people used interpolation polynomials, rational functions, and so on as
approximation tools to carry out in-depth research. The spline function approximation started in
the late 1970s and the algebraic polynomial and trigonometric polynomial approximation developed
in the 1980s are the development process of approximation theory.

1.1. Notations and definitions

This paper mainly focuses on the optimal interpolation problem with Hermite information in
the Sobolev class. As the preparatory work, we first introduce some basic notations and definitions
that are of great use for our study.

Denote by N the set of all positive integers, and let n, r ∈ N. Let G be a Banach space of
functions defined on the compact set [−1, 1], and F be the subspace of G that can be continuously
embedded in Cn−1([−1, 1]), where Cn = Cn([−1, 1]) represents the space of functions with nth
order continuous derivative on [−1, 1], M be a convex and central symmetric subset of F , and
Fn is an n-dimensional subspace of G. Specially, C0([−1, 1]) = C([−1, 1]). Following Traub and

1This research was supported by the National Natural Science Foundation of China (11871006).
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Woźniakowsi [1], we study the problem of optimal recovery for f from M by using a finite number
of Hermite data f (j)(t) for some j ≤ n − 1 and some t ∈ [−1, 1]. We consider only nonadaptive
information. Now, we list some basic concepts as follows.

Let An be the class of all sets

Θ := ((x1, α1), (x2, α2), . . . , (xr, αr))

of ordered pairs (xi, αi), i = 1, 2, . . . , r, of Hermite interpolation nodes −1 ≤ x1 < x2 < · · · < xr ≤ 1
and multiplicity labels {αi ∈ N : i = 1, 2, . . . , r} with

∑r
i=1 αi = n, and call the number of

interpolation nodes of a set Θ is n (counting multiplicity).
For each Θ = ((x1, α1), (x2, α2), . . . , (xr, αr)) ∈ An, we can determine a mapping IΘ : M −→ R

n,
and

IΘ(f) := (f (0)(x1), . . . , f
(α1−1)(x1), f

(0)(x2), . . . , f
(α2−1)(x2), . . . , f

(0)(xr), . . . , f
(αr−1)(xr)),

where f (0) := f .
Usually, a mapping ϕ : Rn −→ Fn is called an algorithm. If this mapping is linear, we call it a

linear algorithm. Let Φn (ΦL
n) denote the set of all algorithms (linear algorithms).

For any ϕ ∈ ΦL
n , it has the following form

ϕ ◦ IΘ(f) :=

r
∑

i=1

αi−1
∑

j=0

f (j)(xi)hi,j(x), hi,j ∈ Fn. (1.1)

For any f ∈ M, ϕ ∈ Φn,Θ ∈ An, if we take ϕ ◦ IΘ(f) as an approximation representation of f ,
then the global error is

sup
f∈M

‖ f − ϕ ◦ IΘ(f) ‖G . (1.2)

According to Sun and Fang [2], we get that the intrinsic error and the linear intrinsic error of the
optimal recovery problem (M, IΘ, G) are defined as follows

E (M,Θ, G) := inf
ϕ∈Φn

sup
f∈M

‖ f − ϕ ◦ IΘ(f) ‖G,

and
E

L(M,Θ, G) := inf
ϕ∈ΦL

n

sup
f∈M

‖ f − ϕ ◦ IΘ(f) ‖G,

respectively. The infima of the intrinsic error and the linear intrinsic error with respect to An are

R(n,M, G) := inf
Θ∈An

E (M,Θ, G) = inf
ϕ∈Φn,Θ∈An

sup
f∈M

‖ f − ϕ ◦ IΘ(f) ‖G, (1.3)

and
RL(n,M, G) := inf

Θ∈An

E
L(M,Θ, G) = inf

ϕ∈ΦL
n ,Θ∈An

sup
f∈M

‖ f − ϕ ◦ IΘ(f) ‖G,

respectively. Obviously, R(n,M, G) ≤ RL(n,M, G). For the convenience of the readers, when we
only choose the values of the function f in IΘ, that is, αi = 1, i = 1, 2, . . . , n, we can replace
R(n,M, G) and RL(n,M, G) with R̄(n,M, G) and R̄L(n,M, G), respectively.

If there is Θ∗ ∈ An and ϕ∗ ∈ Φn that satisfies

R(n,M, G) = E (M,Θ∗, G) = sup
f∈M

‖ f − ϕ∗ ◦ IΘ∗(f) ‖G,

then we call IΘ∗ the nth optimal information operator and ϕ∗ the nth optimal algorithm.
We call

D(n,M, G) := 2 inf
Θ∈An

sup
f∈M, IΘ(f)=0

‖ f ‖G (1.4)
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the n-minimal information diameter. From [1], we can obtain

sup
f∈M, IΘ(f)=0

‖ f ‖G≤ E (M,Θ, G) ≤ 2 sup
f∈M, IΘ(f)=0

‖ f ‖G .

Then, combine (1.3) with (1.4) to find the lower bound of each term in the above inequalities when
Θ are taken over the set An, we obtain

1

2
D(n,M, G) ≤ R(n,M, G) ≤ D(n,M, G). (1.5)

Sometimes, we can also use the notation of function approximation to express the above
quantities. Let Ln be a set of linear operators A: M −→ Fn. For any A ∈ Ln, we define

E(M, A, Fn)G := sup
f∈M

‖f −A(f)‖G,

and call
E

L
n (M, Fn)G := inf

A∈Ln

E(M, A, Fn)G

the best linear approximation of the function class M at G by Fn.
Let I = [a, b] ⊂ R. For 1 ≤ p ≤ ∞, denote by Lp(I) the space of integrable functions defined

on I and equipped with the following finite norm

‖f‖p,I :=















(
∫

I
|f(x)|pdx

)1/p

, 1 ≤ p < ∞,

ess sup
x∈I

|f(x)| , p = ∞.

Denote by Ln
p (I) the class of all functions f such that f (n−1) are absolutely continuous on I and

f (n) ∈ Lp(I), set

W n
p (I) := {f ∈ Ln

p (I) : ‖f
(n)‖p,I ≤ 1}.

Specially, let L0
p(I) = Lp(I). When [a, b] = [−1, 1], we simply write these notations ‖ · ‖p,I , L

n
p (I),

Lp(I), W
n
p (I) into ‖ · ‖p, L

n
p , Lp, W

n
p , respectively.

Recently, the study of sampling numbers has attracted much interest, and a great number
of interesting results [3–6] have been obtained. In addition, derivative values have been used in
calculation and design (see [7–9]). To consider the influence of using derivative values on calculation
accuracy, in this paper, we will use the properties of spline functions to study the optimal Hermite
interpolation of the Sobolev class W n

1 in L1. Obviously, W n
1 is a center symmetric convex subset

of L1. To show our results, we introduce the Hermite interpolation operator.
Let Θ = ((x1, α1), (x2, α2), . . . , (xr, αr)) ∈ An. For n ∈ N, let Pn be the set of all algebraic

polynomials of degree at most n. Taking the set of functions hi,j ∈ Pn−1 in (1.1) that satisfies the
following conditions:

h
(m)
i,j (xk) =

{

1, k = i, m = j,
0, otherwise,

(1.6)

where 1 ≤ k, i ≤ r, 0 ≤ m, j ≤ αi − 1. We determine an algorithm ϕΘ such that ϕΘ ◦ IΘ : W n
1 −→

Pn−1 in (1.1) is a Hermite interpolation polynomial operator, which is denoted by HΘ = ϕΘ ◦ IΘ,
i.e., the Hermite interpolation polynomial HΘ(f) of a function f ∈ W n

1 based on Θ is defined as

HΘ(f) ∈ Pn−1, H
(j)
Θ (f, xi) = f (j)(xi), 0 ≤ j ≤ αi − 1, 1 ≤ i ≤ r. (1.7)

In [10], the classical Hermite interpolation formula gives

HΘ(f, x) =
r

∑

i=1

WΘ(x)

(x− xi)αi

αi−1
∑

j=0

f (j)(xi)
(x− xi)

j

j!

{(x− xi)
αi

WΘ(x)

}(αi−j−1)

(xi)
,
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where
{(x− xi)

αi

WΘ(x)

}(αi−j−1)

(xi)
is the function

(x− xi)
αi

WΘ(x)
expanded at xi to the first αi − j terms of

the Taylor series, and WΘ(x) =
∏r

i=1(x− xi)
αi . By (1.6), one obtains an explicit formula

HΘ(f, x) =
r

∑

i=1

αi−1
∑

j=0

f (j)(xi)hi,j(x). (1.8)

In particular, if x1, x2, . . . , xn are n distinct points in [−1, 1], i.e., Θ := {−1 ≤ x1 < x2 < · · · <
xn ≤ 1, αi = 1, i = 1, 2, . . . , n}, we obtain the classical Lagrange interpolation formula

LΘ(f, x) =

n
∑

i=1

f(xi)ℓi(x),

where

ℓi(x) =
WΘ(x)

(x− xi)W
′
Θ(xi)

, WΘ(x) =
n
∏

i=1

(x− xi).

When constructing interpolation algorithms, the selection of interpolation nodes Θ ∈ An is very
important. In terms of Lagrange interpolation, given a sufficiently smooth function, if a sequence
of interpolation nodes is not suitably chosen, then the sequence of interpolation polynomials does
not converge to the function as the number of interpolation nodes tends to infinity. A well-known
example is Runge’s phenomenon. Hence the study of optimal interpolation nodes is a hot research
topic (see [11–16] and the references therein). In this paper, we study the optimal interpolation
nodes of general Hermite interpolation and give the nth optimal Hermite interpolation nodes when
the number of interpolation nodes is fixed at n.

Hermite interpolation is a kind of interpolation that is wider than Lagrange interpolation. It
uses not only the function values information but also the derivative values information. Under
the condition of using the same amount of information, can increasing the use of derivative values
information make the calculation result more accurate? In general the answer is no. In the following,
we give the optimal Hermite interpolation nodes to show it.

Let G = L1, M = W n
1 , Fn = Pn−1, Ln := {HΘ : Θ ∈ An}. We have

E(W n
1 ,HΘ,Pn−1)1 = sup

f∈Wn
1

‖f −HΘ(f)‖1, (1.9)

and

E
L
n (W n

1 ,Pn−1)1 = inf
Θ∈An

E(W n
1 ,HΘ,Pn−1)1. (1.10)

In particular, if αi = 1, i = 1, 2, . . . , n, we substitute Ē L
n (W n

1 ,Pn−1)1 for E L
n (W n

1 ,Pn−1)1.
If Θc ∈ An satisfies

E(W n
1 ,HΘc

,Pn−1)1 = E
L
n (W n

1 ,Pn−1)1,

we call Θc the nth optimal Hermite interpolation nodes and HΘc
the nth optimal Hermite

interpolation operator for W n
1 in L1. The value E(W n

1 ,HΘc
,Pn−1)1 is called the nth optimal Hermite

interpolation error for W n
1 in L1.

1.2. Introduction

There are many results about the best approximation on the Sobolev class W r
p ([a, b]), where

1 ≤ p ≤ ∞. For example, when [a, b] = [−1, 1], in 1983, Kofanov [17] studied the best approximation
in L1 for the class W r

1 by Pn. Set

En(W
r
1 ,Pn)1 := sup

f∈W r
1

inf
g∈Pn

‖f − g‖1.
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The main result of the paper [17] reads as follows:

En(W
r
1 ,Pn)1 = max

{

1

r!

∣

∣

∣
(x+ 1)r + 2

n+1
∑

i=1

(−1)i(x− xi)
r
+

∣

∣

∣
: x ∈ [−1, 1]

}

, r ≥ 2, n ≥ r − 1,

where xi = − cos
πi

n+ 2
. The above result was announced in [18] for r = 1, 2 and n ≥ r − 1.

Let [a, b] = [0, 1]. For 1 ≤ p ≤ ∞, n ≥ r ≥ 2. Let Sn
r−1 be the n-dimensional subspace of

polynomial splines of degree r−1. Shevaldina [19] obtained the exact value of En(W
r
p ([0, 1]), S

n
r−1)1,

where
En(W

r
p ([0, 1]), S

n
r−1)1 := sup

f∈W r
p ([0,1])

inf
s∈Sn

r−1

||f − s||1.

In addition, she determined the spline function of the best approximation in the mean for the class
W r

p ([0, 1]) as follows:

En(W
r
p ([0, 1]), S

n
r−1)1 = sup

f∈W r
p ([0,1])

||f − s(f ; ·)||1,

where s(f ;x) is a spline function interpolating f on knots xk = 1/2(1 − cos kπ/(n + 1)),
k = 1, . . . , n, i.e., s(f ;x) =

∑n
j=1 f(xj)sj(x), with the interpolation basis splines sj(x): sj(xk) =

δj,k, (δj,k−kronecker delta) for x ∈ [0, 1].
Later, in [20], Xu, Liu, and Wang studied the optimal Lagrange interpolation problem in L1 for

the class W r
1 by Pr−1, and established a result as follows:

R̄(r,W r
1 , L1) = R̄L(r,W r

1 , L1) = Ē
L
r (W r

1 ,Pr−1)1 = E(W r
1 , LΘr

,Pr−1)1 =
Cr

r!
, r ∈ N,

where

Θr =
(

cos
rπ

r + 1
, cos

(r − 1)π

r + 1
, . . . , cos

π

r + 1

)

is the set of extreme points of (r + 1)th Chebyshev polynomial Tr+1(x) = cos((r + 1) arccos x) and

Cr =

∥

∥

∥

∥

(1− ·)r − 2

r
∑

i=1

(−1)i−1
(

cos
iπ

r + 1
− ·

)r

+

∥

∥

∥

∥

∞

.

In the present paper, we study the optimal Hermite interpolation problem for the class W n
1

by Pn−1. The problem is to find the optimal Hermite interpolation process. From the above analysis,
the result of the paper [17] (for n = r − 1) gives the lower estimate of the approximation error for
this problem. In addition, the result in [19] for case n = r and when the space of spline functions
coincides with the space of algebraic polynomials provides the corresponding above estimate. Next,
we will present a novel and significantly different solution to this problem.

2. Main results and preliminaries

Theorem 2.1. Let n ∈ N. Then we have

R(n,W n
1 , L1) = RL(n,W n

1 , L1) = E
L
n (W n

1 ,Pn−1)1 = E(W n
1 , LΘn

,Pn−1)1,

where

Θn =
(

cos
nπ

n+ 1
, cos

(n− 1)π

n+ 1
, . . . , cos

π

n+ 1

)

is the set of extreme points of (n+ 1)th Chebyshev polynomial Tn+1(x) = cos((n+ 1) arccos x).

Theorem2.1 shows that the optimal Hermite interpolation is the Lagrange interpolation over
the nodes Θn, i.e., increasing the use of the derivative values information does not obtain better
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algorithms. Then, the result of [20] is applied, which contains the approximation error of the optimal
Lagrange interpolation.

Now, we introduce some information about the norms of integral operators. Let K(x, t) be a
piecewise continuous function on [−1, 1] × [−1, 1]. We define

S(f, x) =

1
∫

−1

K(x, t)f(t)dt.

It is known that S is a linear continuous operator from L1 to L1. Furthermore, let ‖S‖1,1 be the
operator norm of S from L1 to L1. Then it is known that

‖S‖1,1 = sup
f∈L1,f 6=0

‖Sf‖1
‖f‖1

= sup
−1≤t≤1

1
∫

−1

|K(x, t)|dx. (2.1)

We shall use the following lemmas and properties in the proof of Theorem 2.1. In the first lemma,
we give an expression of the remainder of the Hermite interpolation on the interval [−1, 1].

Lemma 2.1 Let f ∈ W n
1 , Θ ∈ An. Then, the remainder RΘ(f, x) := f(x)−HΘ(f, x) for the

Hermite interpolation polynomial based on Θ can be represented in the form

RΘ(f, x) =
1

(n− 1)!

1
∫

−1

f (n)(t)[(x − t)n−1
+ −HΘ((· − t)n−1

+ , x)]dt.

Proof. Let P (x) = f(−1) + f ′(−1)(x + 1) + · · · +
f (n−1)(−1)

(n− 1)!
(x + 1)n−1. For f ∈ W n

1 , we

apply Taylor’s formula of f at −1 with integral remainder, then f(x) = P (x) + rn−1(x), where the
integral remainder rn−1 is

rn−1(x) =
1

(n− 1)!

1
∫

−1

(x− t)n−1
+ f (n)(t)dt.

So we can obtain

r
(j)
n−1(x) =

1

(n− j − 1)!

1
∫

−1

(x− t)n−1−j
+ f (n)(t)dt, j = 0, 1, 2, . . . , n− 1.

Considering P (x) is an algebraic polynomial of degree at most n − 1, and according to the
properties of HΘ, we get P (x)−HΘ(P, x) = 0, where Θ ∈ An. Hence, by (1.8) we have

f(x)−HΘ(f, x) = rn−1(x)−HΘ(rn−1, x)

=
1

(n− 1)!

1
∫

−1

f (n)(t)

[

(x− t)n−1
+ −

r
∑

i=1

αi−1
∑

j=0

(n− 1)!

(n − j − 1)!
(xi − t)n−1−j

+ · hi,j(x)

]

dt

=
1

(n− 1)!

1
∫

−1

f (n)(t)
[

(x− t)n−1
+ −HΘ

(

(· − t)n−1
+ , x

) ]

dt.

We complete the proof of Lemma 2.1.

Using Lemma 2.1, we get the following lemma.
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Lemma 2.2. Let Θ ∈ An. Then we have

E(W n
1 ,HΘ,Pn−1)1 = sup

−1≤t≤1

1
∫

−1

|BΘ(x, t)|dx,

where

BΘ(x, t) =
(x− t)n−1

+ −HΘ

(

(· − t)n−1
+ , x

)

(n− 1)!
.

Proof. Let BΘ(x, t) =
(x− t)n−1

+ −HΘ

(

(· − t)n−1
+ , x

)

(n− 1)!
. For f ∈ W n

1 , then it follows from

Lemma 2.1 that

f(x)−HΘ(f, x) =

1
∫

−1

BΘ(x, t)f
(n)(t)dt.

Let

S(f (n), x) =

1
∫

−1

BΘ(x, t)f
(n)(t)dt.

Combining (1.9) with (2.1), we obtain

E(W n
1 ,HΘ,Pn−1)1 = sup

f∈Wn
1

‖S(f (n), ·)‖1 = ‖S‖1,1 = sup
−1≤t≤1

1
∫

−1

|BΘ(x, t)|dx.

We complete the proof of Lemma 2.2.

In the following, we introduce weak Chebyshev subspace and give some properties on this space.

An n-dimensional subspace G of C([a, b]) is called a weak Chebyshev subspace if every function
g ∈ G has at most n− 1 sign changes.

Let points a = x0 < x1 < · · · < xr < xr+1 = b and an integer m ≥ 1 be given. We call

Sm(x1, x2, . . . , xr) = {s ∈ Cm−1([a, b]) : s
∣

∣

[xi,xi+1]
∈ Pm, i = 0, 1, . . . , r}

the space of polynomial splines of degree m with r fixed knots x1, x2, . . . , xr.

The following lemma says that spline spaces are weak Chebyshev subspaces.

Lemma 2.3 [21, Theorem 1.19 of Chapter II ]. The space Sm(x1, x2, . . . , xr) is a (r +m+ 1)-
dimensional weak Chebyshev subspace of C([a, b]).

From [21, Theorem 6.3 of Chapter II ], it follows that for every n-dimensional weak Chebyshev
subspace of C([a, b]), there exists a set of n-canonical points t1 < · · · < tn in (a, b), i.e., there exist
t1 < · · · < tn in (a, b) such that

n
∑

i=0

(−1)i
ti+1
∫

ti

g(t)dt = 0

holds for all g ∈ G, where t0 = a and tn+1 = b.

If G is a weak Chebyshev subspace of C([a, b]), then the set

K(G) = {f ∈ C([a, b]) : span(G ∪ f) is a weak Chebyshev subspace of C([a, b])}
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is called the convexity cone of G.

The following lemma gives a special relationship between the best L1-approximation and
interpolation for the weak Chebyshev subspace.

Lemma 2.4 [21, Theorem 6.6 of Chapter II ]. Let G be an n-dimensional weak Chebyshev

subspace of C([a, b]). If the set {t1, . . . , tn} of canonical points of G is poised with respect to G,

then every function f ∈ K(G) has a unique best L1-approximation gf from G and gf is uniquely

determined by

gf (ti) = f(ti), i = 1, . . . , n.

3. Proof of Theorem 2.1

The first step is to prove that

R(n,W n
1 , L1) = RL(n,W n

1 , L1) = E
L
n (W n

1 ,Pn−1)1. (3.1)

We first consider the above estimate of (3.1). Let Θ ∈ An. Then, the Hermite interpolation
operator HΘ is linear. Hence, it follows from (1.10) that

R(n,W n
1 , L1) ≤ RL(n,W n

1 , L1) ≤ E
L
n (W n

1 ,Pn−1)1. (3.2)

Now, we consider the lower estimate of (3.1). For Θ ∈ An, and any f ∈ W n
1 . Let f̄ = f−HΘ(f),

we can get f̄ ∈ W n
1 . And from (1.7) we know that f̄ (j)(xi) = 0, 0 ≤ j ≤ αi − 1, 1 ≤ i ≤ r. Then

sup
f∈Wn

1
, IΘ(f)=0

‖f‖1 ≥ ‖f̄‖1 = ‖f −HΘ(f)‖1.

Because f is arbitrary, we have

sup
f∈Wn

1
, IΘ(f)=0

‖f‖1 ≥ sup
f∈Wn

1

‖f −HΘ(f)‖1.

Therefore, by (1.4) and (1.10), we obtain

1

2
D(n,W n

1 , L1) ≥ E
L
n (W n

1 ,Pn−1)1.

Additionally, from (1.5), we know that R(n,W n
1 , L1) ≥

1

2
D(n,W n

1 , L1), so

R(n,W n
1 , L1) ≥ E

L
n (W n

1 ,Pn−1)1. (3.3)

Combining (3.2) with (3.3), we get (3.1).

The next step is to prove that

E
L
n (W n

1 ,Pn−1)1 = E(W n
1 , LΘn

,Pn−1)1. (3.4)

Considering LΘn
is a Hermite interpolation operator, so

E
L
n (W n

1 ,Pn−1)1 ≤ E(W n
1 , LΘn

,Pn−1)1. (3.5)

Finally, we prove the opposite inequality of (3.5). For t = 1, (· − t)n−1
+ = 0 ∈ Pn−1. For t = −1,

(· − t)n−1
+ = (· − t)n−1 ∈ Pn−1. Hence

(x− t)n−1
+ − LΘn

((· − t)n−1
+ , x) = 0, (x− t)n−1

+ −HΘ((· − t)n−1
+ , x) = 0. (3.6)
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Now, we consider t ∈ (−1, 1). It is known that Pn is a Chebyshev subspace of C([−1, 1]).
Furthermore, from [21, Theorem 4.10 of Chapter I ], we know that the canonical points for Pn

on [−1, 1] are the extreme points of the Chebyshev polynomial Tn+2 in (−1, 1), i.e.,

ti = cos
(n+ 2− i)π

n+ 2
, i = 1, 2, . . . , n+ 1.

So the set Θn of the canonical points for Pn−1 on [−1, 1] can be expressed as

Θn =

(

cos
nπ

n+ 1
, cos

(n− 1)π

n+ 1
, . . . , cos

π

n+ 1

)

.

In addition, from Lemma 2.3, we know that for each t ∈ (−1, 1), span(Pn−1∪ (·− t)n−1
+ ) is a (n+1)-

dimensional weak Chebyshev space of C([−1, 1]), and by the definition of convexity cone of Pn−1

we get (· − t)n−1
+ ∈ K(Pn−1). Hence, from Lemma 2.4, it follows that LΘn

((· − t)n−1
+ , x) is the best

L1-approximation of (· − t)n−1
+ from Pn−1 on [−1, 1]. And because HΘ((· − t)n−1

+ , x) ∈ Pn−1, we get

1
∫

−1

∣

∣(x− t)n−1
+ − LΘn

((· − t)n−1
+ , x)

∣

∣dx ≤

1
∫

−1

∣

∣(x− t)n−1
+ −HΘ((· − t)n−1

+ , x)
∣

∣dx. (3.7)

From (3.6), (3.7) and Lemma 2.2, it follows that

E(W n
1 , LΘn

,Pn−1)1 ≤ E(W n
1 ,HΘ,Pn−1)1.

By (1.10) and the fact that Θ ∈ An is arbitrary, hence

E(W n
1 , LΘn

,Pn−1)1 ≤ E
L
n (W n

1 ,Pn−1)1.

This shows that (3.4) holds.
Sum up, by (3.1) and (3.4), we complete the proof of Theorem 2.1. �
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