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The 2023 Ural Workshop on Group Theory and Combinatorics [1] was held online during the
period 21 to 27 August 2023. The workshop was organized by the N.N. Krasovskii Institute of
Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences [2], the Institute
of Natural Sciences and Mathematics of the Ural Federal University [3], and the Ural Mathematical
Center [4]. The 2023 Ural Workshop on Group Theory and Combinatorics continued the Ural
Seminar on Group Theory and Combinatorics [5] and shared all declarations and rules of work of
the seminar. The workshop covered modern aspects of group theory (including questions of actions
of groups on combinatorial objects), graph theory, some combinatorial aspects of topology and
optimization theory, and related topics, and aimed to support communications between specialists
on group theory, combinatorics, and their applications from all over the world. The program of
the workshop included 30 fifty-minute talks by keynote speakers and 21 twenty-minute contributed
talks.

The first working day of the workshop (Monday, August 21) was mostly devoted to actions of
groups on different combinatorial objects. Keynote speakers of the first day and their talks:

Cheryl Praeger (The University of Western Australia, Perth, Australia), “Group theoretic

constructions of normal covers of the complete bipartite graphs K2n,2n”.

Bernardo Rodrigues (University of Pretoria, Pretoria, South Africa), “On finite imprimitive

rank 3 permutation groups acting as permutation automorphism groups of self-dual code ”.
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Gareth Jones (University of Southampton, Southampton, UK), “Regular maps and hyper-

maps with primitive automorphism groups ”.

Anton Klyachko (Lomonosov Moscow State University, Moscow, Russia), “The cost of

symmetry ”.

Pablo Spiga (Department of Mathematics and Applications, University of Milano–Bicocca,
Italy), “Normal coverings of finite groups, the Isbell conjecture and the Erdős–Ko–Rado theo-

rem ”.

Also on Monday, August 21 there were 4 contributed talks.

The second working day of the workshop (Tuesday, August 22) was devoted to algorithms on
groups, representations of groups, problems of coincidence of words in groups, and other questions.
Keynote speakers of the second day and their talks:

Marston Conder (University of Auckland, Auckland, New Zeland), “Finding subgroups of

interest in finitely-presented groups ”.

Sergey Gorchinskiy (Steklov Mathematical Institute of RAS, Moscow, Russia), “Irreducible
representations of finitely generated nilpotent groups ”.

Mikhail Zaicev (Lomonosov Moscow State University, Moscow, Russia), “On existence of

PI-exponent of codimension growth ”.

Cristina Acciarri (University of Modena and Reggio Emilia, Italy, and University of Brasilia,
Brazil), “On conciseness of words in residually finite groups ”.

Gustavo Fernández-Alcober (University of the Basque Country, Bilbao, Spain), “Concise

words and conciseness on normal subgroups ”.

Also on Tuesday, August 22 there were 3 contributed talks.

The third working day of the workshop (Wednesday, August 23) was mostly devoted to graphs
defined on groups. Keynote speakers of the third day and their talks:

Peter Cameron (University of St Andrews, UK), “What can graphs and algebraic structures

say to each other ? ”

Andrea Lucchini (University of Padova, Padova, Italy), “Solubilizers in profinite groups ”.

Carmine Monetta (University of Salerno, Fisciano (Salerno), Italy), “Group nilpotency from

a graph point of view ”.

Lev Kazarin (P.G. Demidov Yaroslavl State University, Yaroslavl, Russia), “Graphs, facto-

rizations and the structure of a group ”.

Alexandre Zalesskii (University of Brasilia, Brasilia, Brazil), “Hall–Higman type theorems,

Grunberg–Kegel graphs and fixed point elements in finite group representations ”.

Also on Wednesday, August 23 there were 2 contributed talks.

The fourth working day of the workshop (Thursday, August 24) was mostly devoted to investiga-
tions on the subgroup structure and the normal structure of groups. Keynote speakers of the fourth
day and their talks:

Tomasz Popiel (Monash University, Melbourne, Australia), “The maximal subgroups of the

Monster”.

Daria Lytkina (Sobolev Institute on Mathematics SB RAS, Novosibirsk State University,
and Mathematical Center in Akademgorodok, Novosibirsk, Russia), “Periodic Frobenius

groups ”.

Long Miao (Hohai University, Nanjing, China), “On F-abnormal subgroups of finite groups ”.

Marina Sorokina (I. G. Petrovsky Bryansk State University, Bryansk, Russia), “Fibered and

foliated formations of finite groups ”.
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Wenting Zhang (Lanzhou University, Lanzhou, China), “Minimal non-finitely based

involution monoids ”.

Also on Thursday, August 24 there were 2 contributed talks.

The fifth working day of the workshop (Friday, August 25) was mostly devoted to arithmetical
characterizations of finite groups. Keynote speakers of the fifth day and their talks:

Danila Revin (Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia and N.N. Kra-
sovskii Institute of Mathematics and Mechanics UB RAS, Yekaterinburg, Russia), “On the

Baer–Suzuki width of some radical classes ”.

Maria Grechkoseeva (Sobolev Institute on Mathematics SB RAS and Novosibirsk State
University, Novosibirsk, Russia), “On characterization of finite groups by the set of element

orders ”.

Patrizia Longobardi (University of Salerno, Fisciano (Salerno), Italy), “A new

characterization of the alternating group of degree 5 ”.

Mercede Maj (University of Salerno, Fisciano (Salerno), Italy), “On a problem related to

the conjugacy classes of a group ”.

Also on Friday, August 25 there were 3 contributed talks.

The sixth working day of the workshop (Saturday, August 26) was mostly devoted to algebraic
combinatorics. Keynote speakers of the sixth day and their talks:

Yaokun Wu (Shanghai Jiao Tong University, Shanghai, China), “Unavoidable intersection

patterns of d-boxes ”.

Alexander Makhnev (N.N. Krasovskii Institute of Mathematics and Mechanics UB RAS
and Ural Federal University, Yekaterinburg, Russia), “On Krein graphs without triangles ”.

Alexander Mednykh (Sobolev Institute on Mathematics SB RAS and Novosibirsk State
University, Novosibirsk, Russia), “Spectral invariants of cyclic covering of graphs and their

applications in combinatorial analysis ”.

Alexander Zvonkin (University of Bordeaux, Talence, France), “Weighted trees ”.

Also on Saturday, August 26 there were 6 contributed talks.

The last working day of the workshop (Sunday, August 27) was devoted to atrithmetical
characterizations of finite groups and to Schur rings over groups. Keynote speakers of the last
day of the workshop and their talks:

Marialaura Noce (University of Salerno, Fisciano (Salerno), Italy), “On the product of

element orders of finite group ”.

Gang Chen (School of Mathematics and Statistics, Central China Normal University,
Wuhan, China), “Schur rings over free abelian group of rank two ”.

Also on Sunday, August 27 there was 1 contributed talk. Moreover, the Open Problems Session
was held at the end of the workshop.

Keeping with tradition, the participants of the workshop posed a number of open problems in
their areas of research. Here we list the problems and some comments on them. The records of all
discussions are available on the workshop website [1] for registered participants and on the website
of the Ural Seminar on Group Theory and Combinatorics [5] after registration. The problems below
are ordered so as to avoid repetition of definitions and notation.

1. Let G be a finite group. There are four graphs defined on the vertex set G. In each case the
conditions for elements x and y to be adjacent are given below.

The power graph ΓP (G): x = ym or y = xm for some integer m.
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The enhanced power graph ΓE(G): there exists z with x = zk, y = zl, for some integers
k and l.

The complement of the independence graph Γ′

I(G): there is no minimal (under inclusion)
generating set containing {x, y}.

The complement of the rank graph Γ′

R(G): there is no generating set of minimum
cardinality containing {x, y}.

Under inclusion of edge sets, these are as follows.
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The inclusions of ΓP in ΓE, and of Γ′

I in Γ′

R, are clear. For the other two, note that

if x = ym, then we can delete x from any generating set containing {x, y}, so such a set
cannot be minimal;

if x = zk and y = zl, then we may replace x and y in any generating set containing
{x, y} by z, so such a set cannot have minimum cardinality.

• For every edge in the diagram, determine the groups G for which the two corresponding
graphs are equal.

For ΓP and ΓE , these are the groups in which every element has prime power order; they
were investigated by many authors, a summary of results can be found, for example, in [6,
Theorem 1.7]. For ΓP and Γ′

I , and for ΓE and Γ′

R, they are determined in a recent paper by
S. Freedman et al. [7]. The remaining case is open.

• In cases where the graphs are not equal, consider the difference graph on the group,
whose edges are those of the larger graph which are not contained in the smaller.
Investigate problems of these four difference graphs.

For the difference of ΓE and ΓP , work has begun, see [8]. In the other three cases, probably
nothing has been done.

Peter Cameron

2. Does there exists a finite group G with two normal subgroups K and L, each having index
12 in G, such that

(a) K ∼= L, and

(b) G/K ∼= C12 while G/L ∼= Alt4?

by Gabriel Verret, via Marston Conder; see Problem 20.21 in [9]

Proposition (Marston Conder and Natalia Maslova). Let G be a finite group of the

smallest possible order with two normal subgroups K and L, each with index 12 in G, such

that K is isomorphic to L, but G/K is isomorphic to C12, while G/L is isomorphic to Alt4.
Let M = KL and N = L ∩K. Then the following statements hold:

(1) There is no ψ ∈ Aut(G) with ψ(K) = ψ(L), in particular, K cannot be conjugate to

L in G.

(2) M is a 2-group with |G :M | = 3, |G : N | = 48 and G/N ∼= C4 ×Alt4.
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Proof. If there is ψ ∈ Aut(G) with ψ(K) = ψ(L), then

G/L ∼= ψ(G)/ψ(L) = G/K;

a contradiction. In particular, it is clear that K cannot be conjugate to L in G. Thus,
statement (1) holds.

For statement (2), it is clear that M and N are normal subgroups of G with

M/K = KL/K ∼= L/(K ∩ L) = L/N and M/L = KL/L ∼= K/(K ∩ L) = K/N.

Also K 6= L, and therefore K and L are proper normal subgroups of M , and N is a proper
normal subgroup of each of K and L. Moreover, because M/L ⊳G/L ∼= Alt4 it follows that
M/L ∼= Alt4 or C2 × C2, and so M has index 1 or 3 in G.

Next, to show that M 6= G, suppose first that KL =M = G. Then

K/N ∼=M/L = G/L ∼= Alt4 and L/N ∼=M/K = G/K ∼= C12

(and G/N ∼= C12 × Alt4). Then because K is isomorphic to L, we find that L contains an
isomorphic copy of N, say R, such that L/R ∼= Alt4, but then L contains isomorphic normal
subgroups N and R with L/N ∼= C12 and L/R ∼= Alt4, and therefore L is a smaller counter-
example than G, which is a contradiction. Thus |G :M | = 3, M/K ∼= C4 and M/L ∼= C2×C2,
and then also K/N ∼=M/L ∼= C2×C2 while L/N ∼=M/K ∼= C4. In particular, it also follows
that |G/N | = |G/M ||M/K||K/N | = 48, and that G/N ∼= Alt4×C4 and M/N ∼= C2×C2×C4.

Finally, to show that M is a 2-group, assume the contrary, and let p be any odd prime
divisor of |M |, and let T be the non-trivial characteristic subgroup of M generated by all
of its Sylow p-subgroups. Since N ⊳ M and M/N is an abelian 2-group, every Sylow p-
subgroup of one of the subgroups K, L, M and N is a Sylow p-subgroup of each of the
other three, and so T is generated by all of the Sylow p-subgroups of K, and by all of the
Sylow p-subgroups of L. Hence, every isomorphism from K to L preserves T . But now G/T
contains isomorphic normal subgroups K/T and L/T , with (G/T )/(K/T ) ∼= G/K ∼= C12 and
(G/T )/(L/T ) ∼= G/L ∼= Alt4, again contradicting the minimality of G. Thus, statement (2)
holds. �

3. Let π be a set of primes and π′ be the complement to π in the set P of all primes. If G is a
finite group with a series of a normal subgroups

N0 = {1} ≤ N1 ≤ N2 ≤ · · · ≤ Ns = G,

where every factor group Ni/Ni−1 is either a π′-group, or a p-group for some p ∈ π, then G
is called a π-solvable group.

• Assume that π is a proper subset of P. Let G = AB = AC = BC be the product of
proper π-solvable subgroups A, B and C of a finite simple non-abelian group G. What
is G?

There are at least two examples of this situation.

(1) G = Alt6 is an alternating group of degree 6. There are subgroups A ∼= Alt5, B ∼= Alt5
and C, which is the normalizer in G of its Sylow 3-subgroup, such that G = AB =
AC = BC. Note that A and B are not conjugate in G. If π = P \ {2, 3, 5}, then G is a
simple π-solvable group.

(2) G = PΩ+
8 (q) have subgroups A, B, and C, all isomorphic to PΩ7(q), such that G =

AB = AC = BC.
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• Assume that π is a proper subset of P. Classify all finite simple non-abelian groups G
that are products G = AB of proper π-solvable subgroups A and B of G.

Note that if π = {2}, then the set of all π-solvable groups coincides with the set of all solvable
groups.

Lev Kazarin

4. Let G be a finite group. If x ∈ G, write |x| the order of x. If x, y ∈ G, denote by [x, y] =
x−1y−1xy the commutator of x and y, and write K(G) = {[x, y] | x, y ∈ G}, so G′ = 〈K(G)〉.
Define the functions

o(G) =
1

|G|

∑

x∈G

|x|, oK(G) =
1

|K(G)|

∑

[x,y]∈K(G)

|[x, y]|.

Answering the question posed by E. Khukhro, A. Moretó and M. Zarrin in [10], Marcel Herzog,
Patrizia Longobardi, and Mercede Maj proved in [11] and in [12] that if o(G) ≤ o(Alt5), then
either G is solvable or G ∼= Alt5. Moreover, o(G) = o(Alt5) if and only if G ∼= Alt5.

• Are there other finite simple groups S such that o(G) = o(S) if and only if G ∼= S?

• If ok(G) ≤ ok(Alt5), is it true that either G is solvable or G ∼= Alt5? Since in a finite
simple group every element is a commutator, we can assume that G is a non-simple
group.

In [11] it has been proven that if G is a finite group containing a non-trivial normal
subgroup N , then o(G/N) < o(G).

• If N is a non-trivial normal subgroup of a finite group G, what is the relationship
between oK(G) and oK(G/N)?

Patrizia Longobardi and Mercede Maj

5. Let G be a group. An element x of G \ {1} will be called deficient if

〈x〉 < CG(x)

and it will be called non-deficient if

〈x〉 = CG(x).

Obviously if x is a deficient (non-deficient) element, then every element in the conjugacy
class xG of x in G is deficient (non-deficient). If x ∈ G is deficient (non-deficient), then the
conjugacy class xG will be also called deficient (non-deficient).

Let j be a non-negative integer. We shall say that the group G has defect j, denoted by
G ∈ D(j) or by the phrase “G is a D(j)-group”, if exactly j non-trivial conjugacy classes of G
are deficient.

In the paper [13], the authors studied D(j)-groups G, j ≥ 1, satisfying the following condition:
G contains an element x of order pj+1, for some prime p. This class of groups is denoted
by M(j). In [13] it was proved that any group in M(j) is periodic, and the structure of all
locally finite M(j)-groups was determined.

Consider now the class of D(j)-groups G, where j ≥ 1, satisfying the following condition: G
contains an element x of order pj, for some prime p. Call N (j) this class of groups.

• Is a group in N (j) periodic?
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• What is the structure of a locally finite group in N (j)?

Patrizia Longobardi and Mercede Maj

6. Let Γ be a simple graph and i be an integer with 1 ≤ i ≤ diam(Γ). Define Γi to be a simple
graph with the same vertex set as Γ such that two different vertices are adjacent in Γi if and
only if they are at distance i in Γ. It is clear that Γ1 = Γ.

• Does there exist a distance-regular graph Γ such that Γ2 and Γ3 are strongly regular?

• Classify distance-regular graphs Γ of diameter 5 such that Γ5 is also distance-regular of
diameter 5.

Alexander Makhnev

7. A Krein graph Γ = Kre(r) is a triangle-free strongly regular with parameters

((r2 + 3r)2, r3 + 3r2 + r, 0, r2 + r).

For each vertex u, the induced subgraph Γ2(u) on the second neighborhood of the vertex u
in Γ is also strongly regular with parameters

(r4 + 5r3 + 6r2 − r, r3 + 2r2, 0, r2).

Denote this graph by Kre(r)′.

Let r be a positive integer. Does there exist

• A strongly regular graph Kre(r)?

• An extendable symmetric 2-((s+ 2)(s2 + 4s+ 2), (s2 + 3s+ 1), s) design for s = r − 1?

• A connected strongly regular graph such that its local subgraphs are complements to
Kre(r)′?

• A distance-regular graph with intersection array

{r3+3r2+r, r3+3r2+r−1, r3+2r2, r2+r, 1; 1, r2+r, r3+2r2, r3+3r2+r−1, r3+3r2+r}?

Alexander Makhnev

8. Let G be a finite group. Denote by π(G) the set of all prime divisors of the order of G and
by ω(G) the spectrum of G, that is, the set of all element orders of G. The set ω(G) defines
the Gruenberg–Kegel graph (or the prime graph) Γ(G) of G; in this simple graph the vertex
set is π(G), and distinct vertices p and q are adjacent if and only if pq ∈ ω(G).

A finite group G is

recognizable by its Gruenberg–Kegel graph if for each finite group H, Γ(G) = Γ(H) if
and only if G ∼= H;

k-recognizable by Gruenberg–Kegel graph, where k is a positive integer, if there are
exactly k pairwise non-isomorphic finite groups H with Γ(H) = Γ(G);

almost recognizable by Gruenberg–Kegel if it is k-recognizable Gruenberg–Kegel graph
for some positive integer k;

unrecognizable by Gruenberg–Kegel graph, if there are infinitely many pairwise non-
isomorphic finite groups H with Γ(H) = Γ(G).
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A finite group G is almost simple if S ∼= Inn(S)ES ≤ Aut(S) for a finite simple non-abelian
group S.

In [6] me and Peter Cameron proved that if G is a finite group such that G is almost
recognizable by Gruenberg–Kegel graph, then G is almost simple.

• Let G be an almost simple group. Decide whether G is recognizable, k-recognizable for
some integer k > 1, or unrecognizable by its Gruenberg–Kegel graph.

At the moment there are a number of results on recognition of simple groups by Gruenberg–
Kegel graph; some survey of known results obtained before 2022 can be found in [6]. Recently
jointly with Viktor Panshin and Alexey Staroletov in [14] we proved that every simple
exceptional group of Lie type, which is isomorphic to neither 2B2(2

2n+1) with n ≥ 1 nor
G2(3) and whose Gruenberg–Kegel graph has at least three connected components, is almost
recognizable by Gruenberg–Kegel graph; groups 2B2(2

2n+1), where n ≥ 1, and G2(3) are
unrecognizable by Gruenberg–Kegel graph.

Natalia Maslova

9. Let p be an odd prime, H be a finite group with subgroups X ∼= Y ∼= Cn
p such thatH = 〈X,Y 〉

and H/H ′ ∼= X × Y .

Let C(H,X, Y ) be the Cayley graph C(H,S) with S = (X ∪ Y ) \ {1}.

Two families of maximal cliques (complete subgraphs) in C(H,X, Y ) are

{Xh | h ∈ H} and {Y h | h ∈ H}.

These form the vertex set of its clique graph Σ(H,X, Y ) with edge set

EΣ = {{Xh, Y g} | Xh ∩ Y g 6= ∅}.

• Is Σ(H,X, Y ) always an edge-transitive H-normal cover of ΣH′ = Kpn,pn?

• Under what conditions is Σ(H,X, Y ) 2-arc-transitive?

• Under what conditions is Σ(H,X, Y ) semisymmetric?

• Under what conditions is Σ(H,X, Y ) a Cayley graph?

• Find explicit infinite families with some of these properties.

Solutions of corresponding problems for p = 2 can be found in [15].

Cheryl Praeger, Daniel Hawtin and Jin-Xin Zhou

10. Let X be a non-empty class of groups closed under taking

homomorphic images (if G ∈ X and φ is a homomorphism with domain G, then Gφ ∈ X),

subgroups (if G ∈ X and H 6 G, then H ∈ X), and

(the Fitting property) products of normal subgroups (H,K E G and H,K ∈ X, then
HK ∈ X).

Then, in every group G, there is the X-radical, i. e. the largest normal X-subgroup

GX := 〈H | H EG and H ∈ X〉.

According to [16], the Baer–Suzuki width of X is BS(X) ∈ N∪{0}∪{∞} such that BS(X) 6 m
for m ∈ N ∪ {0} if and only if

GX = {x ∈ G | 〈x1, . . . , xm〉 ∈ X for all x1, . . . , xm conjugate to x}

for every group G. If such an m ∈ N ∪ {0} does not exist then BS(X) = ∞.
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• Let X satisfies the above assumptions. Is the Baer–Suzuki width of X finite?

According to [17], a non-empty class X of groups is said to be complete if X is closed under
taking

homomorphic images (if G ∈ X and φ is a homomorphism with domain G, then Gφ ∈ X),

subgroups (G ∈ X and H 6 G, then H ∈ X), and

extensions (H EG and H,G/H ∈ X, then G ∈ X).

Danila Revin has announced in his talk that the Baer–Suzuki width of a complete class X is
always finite.

Danila Revin

11. The symmetric boundary of a non-empty class X of groups (denoted by Υ(X)) is the largest
integer n such that Symn ∈ X. Let Υ(X) := ∞ if Symn ∈ X for all positive integers n.

Danila Revin has announced in his talk that for a complete class X of groups, if Υ(X) < ∞,
then

Υ(X) 6 BS(X) 6 max{11, 2Υ(X) + 1}.

• Find the best possible function f : N → N such that BS(X) ≤ f(Υ(X)) for each complete
class X of groups with Υ(X) <∞.

Danila Revin

The work of the 2023 Ural Workshop on Group Theory and Combinatorics will be continued by
the work of the Ural Seminar on Group Theory and Combinatorics, which will be held every other
Tuesday with possible changes and exceptions. The list of talks of the seminar can be found on its
website [5].

We are looking forward to meet you at the Ural Seminar on Group Theory and Combinatorics!
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