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ON THE WEIGHTED TRIGONOMETRIC BOJANOV–CHEBYSHEV

EXTREMAL PROBLEM1

Béla Nagy and Szilárd Gy. Révész

We investigate the weighted Bojanov–Chebyshev extremal problem for trigonometric polynomials, that

is, the minimax problem of minimizing ‖T‖w,C(T) , where w is a sufficiently nonvanishing, upper bounded,

nonnegative weight function, the norm is the corresponding weighted maximum norm on the torus T, and T is

a trigonometric polynomial with prescribed multiplicities ν1, . . . , νn of root factors | sin(π(t − zj))|
νj . If the νj

are natural numbers and their sum is even, then T is indeed a trigonometric polynomial and the case when all

the νj are 1 covers the Chebyshev extremal problem. Our result will be more general, allowing, in particular, so-

called generalized trigonometric polynomials. To reach our goal, we invoke Fenton’s sum of translates method.

However, altering from the earlier described cases without weight or on the interval, here we find different

situations, and can state less about the solutions.

Keywords: minimax and maximin problems, kernel function, sum of translates function, vector of local

maxima, equioscillation, majorization.

Б.Надь, С.Д. Ревеc. О весовой тригонометрической экстремальной задаче Боянова — Че-

бышева.

Исследуется весовая экстремальная задача Боянова — Чебышева для тригонометрических полиномов,

т. е. минимаксная задача минимизации ‖T‖w,C(T) , в которой w — достаточно ненулевая ограниченная

сверху неотрицательная весовая функция, в качестве нормы рассмотрена соответствующая взвешенная

максимальная норма на торе T, и T — тригонометрический полином с заданными кратностями ν1, . . . , νn
корневых множителей | sin(π(t−zj))|

νj . Если νj — натуральные числа с четной суммой, то T действитель-

но является тригонометрическим полиномом, и случай, когда все νj равны 1, охватывает экстремальную

задачу Чебышева. Наш результат будет более общим, допускающим, в частности, так называемые обоб-

щенные тригонометрические полиномы. Для достижения этой цели используется метод суммы сдвигов

Фентона. Однако, в отличие от ранее описанных случаев без веса или на промежутке, здесь рассмотрены

другие ситуации, а о решениях получено меньше информации.

Ключевые слова: задачи на минимакс и максимин, ядерная функция, функция суммы сдвигов, вектор

локальных максимумов, эквиколебание, мажорирование.
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1. Introduction

In this paper our aim is to solve the Bojanov–Chebyshev extremal problem in the setting of
weighted trigonometric polynomials. As in our earlier papers on related subjects, our approach is
the so-called “sum of translates method” of Fenton, what he introduced in [11]. However, here we
do not develop the whole theory for two reasons: first, in the periodic, i.e., torus setup, in [6] we

1This research of Béla Nagy was supported by project TKP2021-NVA-09. Project no. TKP2021-NVA-09
has been implemented with the support provided by the Ministry of Innovation and Technology of Hungary
from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA funding
scheme. The work of Sz. Gy. Révész was supported in part by Hungarian National Research, Development
and Innovation Fund project # K-132097.
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have already developed much of what is possible, and second, much of what we could find useful
here, is simply not holding true. In this regard, our Example 22 is an important part of the study,
showing the limits of any proof in this generality.

The analogous problems for the unweighted periodic case and the weighted and unweighted
algebraic polynomial cases on the interval were already solved in [6] and in [8] and [10]. The results
available to date do not imply, not in a direct and easy way, the corresponding result to the weighted
trigonometric polynomial Bojanov–Chebyshev problem. In fact, some of them simply does not
remain valid. So, the weighted trigonometric polynomial case poses new challenges and requires a
careful adaptation of our methods, with an avoidance of certain obstacles – for example a bagatelle-
looking, but in fact serious dimensionality obstacle in the way of proving a homeomorphism theorem,
analogous to the earlier cases – and recombining our existing knowledge about the torus setup with
all what can be saved and reused from the interval case. So, we heavily rely on all our earlier papers
[6–10] on the subject, while these in themselves will not suffice to reach our goals. We will still need
to devise new proofs or at least new versions for various existing arguments.

We note that proving minimax- and equioscillation type results in certain contexts may be
attempted without rebuilding the whole theory, just by transferring some existing results of
an already better explored case to the new settings. This has already been done in [6] for
the (unweighted) algebraic polynomial case of the interval, deriving it from the (unweighted)
trigonometric polynomial case, explored in the major part of [6]. However, the transference was
not easy and broke down for general weights (even if for even weights it seemed working). Similarly,
in “On the weighted Bojanov–Chebyshev problem on an infinite interval” (manuscript) Tatiana
Nikiforova succeded in transferring certain results to the real line and semiaxis cases from the
interval case2 unresolved some of the related and still interesting questions. However, in both cases
we can expect a more detailed and complete picture when we take the time to build up the method
and explore the full strength of it right in the given context. Therefore, we did not settle with
the results which could be transferred from [6], but worked out the interval case fully in [7–9]; we
also think that it would be worthwhile to do so in the cases of the real line and the semiaxis. In
particular, the relevant variant of the homeomorphism theorem is missed very much for the real
line and the semiaxis. However, as already said and as will be explained in due course later, in the
current setup that buildup does not seem to be possible, and we must be satisfied by a combination
of transferred results and ad hoc arguments.

From our point of view, however, the weighted trigonometric polynomial Bojanov–Chebyshev
problem is not a main goal, but more of an application, which testifies the strength of the method. We
try to work in a rather general framework, and prove more general results than that. In particular,
the results will be valid also for generalized trigonometric polynomials (GTPs), which are introduced,
e.g., in [4] Chapter A4 as follows. Let

T :=

∞⋃

n=1

Tn, Tn :=
{
T (z, t) := c0

n∏

j=1

|sinπ(t− zj)|
νj : c0 > 0,

(1)
νj > 0 (j = 1, . . . , n), z = (z1, . . . , zn) ∈ C

n
}
.

By periodicity one can assume 0 ≤ ℜzj < 1, and in the below extremal problems it is obvious that
replacing ℜzj for zj can only decrease the quantity to be minimized, so that we will assume that all
the zj ’s are real. However, fixing the ordering of zj (or ℜzj) has a role, with different fixed orderings
posing separate extremal problems, and the ordering-specific solution being much stronger, than
just a “global” minimization. As this issue has already been discussed in [6] and [8], e.g., we leave
the details to the reader simply addressing the order-specific, stronger question here. One particular
result ahead of us will be the following.

2The results were presented at the International S. B. Stechkin’s Workshop-Conference on Function
Theory (2022, 2023).
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Theorem 1. Let n ∈ N and ν1, . . . , νn > 0 be given. Put ν := (ν1, . . . , νn).
Further, let w : R → [0,∞) be an upper bounded, nonnegative, 1-periodic weight function,

attaining positive values at more than n points of T := R/Z.

Denote the weighted sup norm by ‖.‖w and consider the minimax problem

M := M(w, ν) := inf
{
‖T (z, .)‖w : T (z; t) =

n∏

j=1

|sinπ(t− zj)|
νj ∈ Tn,

∃c ∈ [0, 1) such that c ≤ ℜz1 ≤ · · · ≤ ℜzn ≤ c+ 1
}
.

Then there exists a minimax point z∗ = (z∗1 , . . . , z
∗
n) ∈ T

n with the prescribed cyclic ordering of

the nodes, satisfying ‖T (z∗, .)‖w = M(w, ν).
Moreover, all z∗j s are distinct and real, and their cyclic ordering is strict in the sense that there

exists c ∈ R such that c < z∗1 < · · · < z∗n < c + 1 (as in the prescribed order, but with strict

inequalities).
Furthermore, this extremal point has the equioscillation property, that is, max{T (z∗, t) : z∗1 ≤

t ≤ z∗2} = · · · = max{T (z∗, t) : z∗j ≤ t ≤ z∗j+1} = · · · = max{T (z∗, t) : z∗n ≤ t ≤ z∗1 +1} = M(w, ν).

The occurrence of c in the description is another simple-looking, yet important difference between
the interval and torus setup. Basically, we fix here the ordering of nodes z∗j only cyclically, that is, as
they follow each other when one covers the circle once, moving continuously from some appropriate
c ∈ T in the positive (counter-clockwise) orientation until return.

2. Basics for the Bojanov–Chebyshev problem

2.1. Trigonometric polynomials and generalized trigonometric polynomials

It is well known that (real) trigonometric polynomials can be factorized as follows. Let

T (t) := a0 +

n∑

j=1

aj sin(2π j t) + bj cos(2π j t)

be a (real) trigonometric polynomial (a0, a1, b1, a2, b2, . . . , an, bn ∈ R, a2n+ b2n 6= 0) of degree n (with
period 1). Then (see, e.g., [4] p. 10) there exist uniquely c0 ∈ R, c0 6= 0, z1, . . . , z2n ∈ C such that
nonreal zj ’s occur in conjugate pairs and

T (t) = c0

2n∏

j=1

sin (π(t− zj)) .

This explains that GTPs are indeed generalizations of trigonometric polynomials3.
By taking logarithm of a generalized trigonometric polynomial (1), we have

log |T (t)| = log |c0|+

n∑

j=1

νj log
∣∣ sin(π(t− zj))

∣∣.

In this work we assume for normalization that our trigonometric polynomial or GTP is monic, i.e.,
the “leading coefficient” is c0 = 1. However, we consider weights, which are fixed, but can as well
be constants, so that the weighted norm can incorporate any other prescribed leading coefficient

3The somewhat curious fact is that root factorization of trigonometric polynomials relies on pairs of

factors of the form sin(π(t − zj)), where one such factor in itself is not a trigonometric polynomial (as it is
only antiperiodic, but not periodic by 1). Considering general products of root factors thus leads to GTPs.
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as well. Obviously, the weighted minimax problem is equivalent to minimizing log ‖T (z, ·)‖w =
supT logw(t) +

∑n
j=1 νj log | sin(π(t − zj))|. This reformulation leads to considering sums (and

positive linear combinations) of translated copies of the basic “kernel function” log | sin(πt)|, instead
of products of root factors. That reformulation, so standard in logarithmic potential theory, will be
the starting point of our presentation of the Fenton method for the current setup.

2.2. Basics of Fenton’s sum of translates approach

In this subsection we present the by now standard notations and terminology how we use
Fenton’s method. There is particular need for this clarification because we will use it in two setups,
needing it for the torus T, but also time to time referring to and invoking into our arguments
corresponding results for the interval case. Here we start with notations and terminologies which
can be equally interpreted for the torus and real line case, so with a slight abuse of notation we do
not distinguish between them.

However, in the next subsection we set a separated terminology with quantities for the periodic
case denoted by a star, because in these notions there are some essential alterations. With this long,
and sometimes doubled list of definitions, notions and terminology, these paragraphs will be boring
and longish, but in later sections we will need it for precise references. Note that in most of our
definitions we will not assume that the considered functions and setups were periodic, and handle
the periodic cases only as special cases, especially pointing out the periodicity assumption.

A function K : (−1, 0) ∪ (0, 1) → R is called a kernel function if it is concave on (−1, 0) and on
(0, 1), and if it satisfies

lim
t↓0

K(t) = lim
t↑0

K(t).

By the concavity assumption these limits exist, and a kernel function has one-sided limits also at
−1 and 1. We set

K(0) := lim
t→0

K(t), K(−1) := lim
t↓−1

K(t) and K(1) := lim
t↑1

K(t).

We note explicitly that we thus obtain the extended continuous function K : [−1, 1] → R ∪{−∞} =:
R, and that we have supK < ∞. Also note that a kernel function is almost everywhere differentiable.

A kernel function K is called singular if

K(0) = −∞. (∞)

We say that the kernel function K is strictly concave if it is strictly concave on both of the
intervals (−1, 0) and (0, 1).

In this paper we consider only systems of kernels which are constant multiples of each other,
i.e.,

Kj(t) = νjK(t)

for some ν1, . . . , νn > 0 and some kernel function K(t).
The condition

K ′(t)−K ′(t− 1) ≥ c for a.e. t ∈ [0, 1], (PMc)

was called “periodized c-monotonicity” in [9] and [8]. The particular case c = 0 deserves special
attention. Then we have

K ′(t)−K ′(t− 1) ≥ 0 for a.e. t ∈ [0, 1]. (PM0)

Our main objective is the study of kernels which extend to R 1-periodically:

K(t− 1) = K(t), t ∈ R, (2)

but sometimes we will invoke more general, not necessarily periodic kernels, too. It is straightforward
that (2) implies (PM0).
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Note that the log-trigonometric kernel

K(t) := log
∣∣ sin(πt)

∣∣ (t ∈ R),

which is in the focus of our analysis, is periodic (2), strictly concave and singular (∞) (and in
particular K(1) = K(−1) = −∞, too).

We will call a function J : R → R an external n-field function on R if it is 1-periodic, bounded
above and it assumes finite values at more than n different points from [0, 1). Comparing this
definition with that of [8], we see that if J is an external n-field function on R, then J is an external
n-field function on [0, 1]. In the opposite direction, if J is an external n-field function on [0, 1] and
J(0) = J(1), then it can be extended 1-periodically to R, to an external n-field function on R. We
use external n-field functions on R from now on and for simplicity, we call them field functions.
With a slight abuse of notation we will also consider them as external field functions on T := R/Z:
again, on T the defining properties are that J : T → R, J > −∞ at more than n points of T, and
J is upper bounded.

For a field function J we define its singularity set and finiteness domain by

X := XJ := J−1({−∞}) ∩ [0, 1) and Xc := [0, 1) \X = J−1(R) ∩ [0, 1).

Then Xc has cardinality exceeding n, in particular X 6= [0, 1). Considering J as defined on T, we
can replace [0, 1) with T in all the above.

Given n ∈ N and n kernel functions K1, . . . ,Kn, and an n-field function J , pure sum of translates
and sum of translates functions are defined as

f(x, r) :=

n∑

j=1

Kj (r − xj) ,

F (x, r) := J(r) + f(x, r)

where r ∈ R, and x = (x1, x2, . . . , xn) ∈ [0, 1]n; or, analogously, we can define f(y, t) and F (y, t)
also for t ∈ T, y ∈ T

n.

2.3. Recollection of earlier results on the torus

Let us recall here two earlier results strongly relevant to our topic. Solving a conjecture of
Ambrus and Ball [1], Hardin, Kendall and Saff proved in [13] the following minimax result on the
torus for a general kernel function.

Theorem 2 (Hardin, Kendall, Saff). Let K be any even (i.e. satisfying K(t) = K(−t)),
concave kernel function4. For any 0 = y0 ≤ y1 ≤ . . . ≤ yn < 2π write y := (y1, . . . , yn) and

F (y, t) := K(t) +
∑n

j=1K(t − yj). Let e :=
( 2π

n+ 1
, . . . ,

2πn

n+ 1

)
(together with 0 the equidistant

node system in T).

4The formulation in [13] is somewhat different, but is equivalent to ours here. They talk about convex
kernel functions (as opposed to our concave kernels), which involves translating everything to the opposite,
including changing min to max and max to min. They normalize to [−π, π] instead of [−1, 1], involving a
dilation by π. Their choice is natural as they work with the arc or circular distance distT i.e. the minimal
length of an arc lying in T and connecting the given points of T; their K is defined as a function on this arc
distance. It follows that they need to define their kernel only on [0, π], while for us representing the kernel on
[−1, 1], we translate this setup to say that K is even. Now working on the torus and postulating concavity
except at 0 implies that the kernel must be concave even at π, and for an even periodic function this is
equivalent to say that it must be nondecreasing between [0, π]. In [13], where K is defined only on [0, π], it
was more natural to say that it is nondecreasing; for us it suffices to say that K is even and periodic, which
entails monotonicity.
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i) Then

inf
0=y0≤y1≤...≤yn<2π

sup
t∈T

F (y, t) = sup
t∈T

F (e, t),

i.e., the smallest supremum is attained at the equidistant configuration.

ii) Furthermore, if K is strictly concave, then the smallest supremum is attained at the equidistant

configuration only.

This result was extended in [6] for different kernel functions as follows (see Theorem 1.3 there).

Theorem 3. Suppose the 2π-periodic functions K0,K1, . . . ,Kn : R → [−∞,+∞) are strictly

concave on (0, 2π) and either all are continuously differentiable on (0, 2π) or for each j = 0, 1, . . . , n

lim
t↑2π

D+Kj(t) = lim
t↑2π

D−Kj(t) = −∞, or lim
t↓0

D−Kj(t) = lim
t↓0

D+Kj(t) = ∞,

D±Kj denoting the (everywhere existing) one sided derivatives of the function Kj . For any 0 =
y0 ≤ y1 ≤ . . . ≤ yn < 2π write y := (y1, . . . , yn) and F (y, t) := K0(t) +

∑n
j=1Kj(t − yj). Then

there are w1, . . . , wn ∈ (0, 2π) such that

M := inf
y∈Tn

sup
t∈T

F (y, t) = sup
t∈T

F (w, t),

and the following hold:

(a) The points 0, w1, . . . , wn are pairwise different and hence determine a permutation σ :
{1, . . . , n} → {1, . . . , n} such that 0 < wσ(1) < wσ(2) < · · · < wσ(n) < 2π. Denote by S
the set of points (y1, . . . , yn) ∈ T

n with 0 < yσ(1) < yσ(2) < · · · < yσ(n) < 2π. A point y ∈ S
together with y0 := 0 determines n + 1 arcs on T, denote by Ij(y) the one that starts at yj
and goes in the counterclockwise direction (j = 0, 1 . . . , n). We have

sup
t∈I0(w)

F (w, t) = · · · = sup
t∈In(w)

F (w, t),

for which we say that w is an equioscillation point.

(b) With the set S from (a) we have

inf
y∈S

max
j=0,...,n

sup
t∈Ij(y)

F (y, t) = M = sup
y∈S

min
j=0,...,n

sup
t∈Ij(y)

F (y, t).

(c) For each x,y ∈ S

min
j=0,...,n

sup
t∈Ij(x)

F (x, t) ≤ M ≤ max
j=0,...,n

sup
t∈Ij(y)

F (y, t).

This is called the Sandwich Property.

2.4. Differences between the torus and the interval setting

A useful step in several of our arguments–already in [6]–is the “cutting up” of the torus at an
arbitrary point c ∈ T. To formalize it, we introduce the mapping πc : R → T, πc(r) := {r+c} = r+c
mod 1. That constitutes a (multiple) covering mapping of T (hence in particular it is continuous),
and it is bijective on [0, 1), so its inverse π−1

c := (πc|[0,1))
−1 : T → [0, 1) is bijective, too. However,

in the inverse direction the mapping ceases to remain continuous: it is continuous at all t 6= c, t ∈ T,
but at c it has a jump.
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Cutting up is particularly useful when we want to prove local results like e.g. continuity of some
mappings at x ∈ T

n. Choosing c appropriately, node systems from T
n, subject to some ordering

restriction and close to x may correspond to node systems in [0, 1)n admitting a specific ordering in
the interval. However, ordered node systems do not have a global match on T. We will detail this
phenomenon below.

In [6] we introduced, for any permutation σ : {1, . . . , n} → {1, . . . , n}, the corresponding simplex
on [0, 1] as

S
(σ)
[0,1] := {(x1, . . . , xn) ∈ [0, 1]n : 0 < xσ(1) < xσ(2) < . . . < xσ(n) < 1} ⊂ R

n.

Its closure is

S
(σ)
[0,1] = {(x1, . . . , xn) ∈ [0, 1]n : 0 ≤ xσ(1) ≤ xσ(2) ≤ . . . ≤ xσ(n) ≤ 1} ⊂ R

n.

An essential difference between the torus and interval setup is that in [0, 1] we cannot perturb in
both directions the nodes lying at the endpoints: they can be moved only towards the interval center.
That restriction could be considered responsible for the need of some monotonicity assumption
about the kernels when proving minimax etc. results for the interval case. However, in the torus
a monotonicity assumption is in fact impossible: a periodic and monotone kernel function would
necessarily be constant. On the other hand we had already seen in [6] that perturbation of node
systems on the torus, in particular when we are free to decide about the direction of change of the
nodes, are very useful. As a consequence, we need to consider all node systems, which may arise
by means of such a perturbation, together. So, we need to consider the case, when a node passes
over 0 and reappears at 1, as the same ordering. In fact, that is very natural: on the torus there
is no strict ordering, but only an orientation, and the “order of nodes” can only be fixed as up to
rotation. This we may call cyclic ordering. In this sense we may write x1 4 . . . 4 xn if starting from
x1 ∈ T and moving in the counterclockwise direction (that is, according to the positive orientation
of the circle), we pass the points in the order of their listing until after a full rotation we arrive at
the initial point x1. Similarly for the strict precedence notation x1 ≺ . . . ≺ xn. Correspondingly,
arcs are defined as the set of points between two endpoints: [a, b] := {x ∈ T : a 4 x 4 b} etc. Note
that for n = 2 x1 4 x2 and also x2 4 x1 hold simultaneously for all points x1, x2 ∈ T, and that
cyclic ordering of n nodes is possible in (n − 1)! different ways5.

The “large simplex on the torus” and its closure is defined as

L := {(y1, y2, . . . , yn) ∈ T
n : y1 ≺ y2 ≺ . . . ≺ yn(≺ y1)},

L := {(y1, y2, . . . , yn) ∈ T
n : y1 4 y2 4 . . . 4 yn(4 y1)}.

One may consider various permutations for the cyclic ordering, but by relabeling we will always
assume that the ordering is just this natural cyclic order.

Pulling back by any π−1
c coordinatewise we see that

π−1
c (L) = ∪n−1

j=0S
(σj )

[0,1], σj(ℓ) :=

{
ℓ+ j, if ℓ = 1, . . . , n− j

ℓ+ j − n, if ℓ = n− j + 1, . . . , n.
(3)

This decomposition is not disjoint, given that L is connected. Similarly, no representation of L by

disjoint S
(σ)
[0,1] exists, as L is connected, too.

For x ∈ S
(σ)
[0,1], we have defined the intervals

I0(x) := [0, xσ(1)], Ij(x) := [xσ(j), xσ(j+1)] (1 ≤ j ≤ n− 1), In(x) := [xσ(n), 1],

5The number of all permutations is n!, but on the torus n orderings become equivalent. Arguing differently,
in a cyclic ordering we can characterize the ordering by the order how other elements follow in the positive
(counterclockwise) direction after the first node. Thus the cyclic orderings can be uniquely characterised by
the (n− 1)! permutations describing the possible orderings of the remaining (n− 1) points.
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and the corresponding “interval maxima” (in fact, supremums, not maximums) as

mj(x) := sup{F (x, t) : t ∈ Ij(x)}, j = 0, 1, . . . , n.

Analogously, for an arbitrary y ∈ L we define

I∗j (y) := {t ∈ T : yj 4 t 4 yj+1}, j = 1, 2, . . . , n− 1,

I∗n(y) := {t ∈ T : yn 4 t 4 y1},

and the corresponding “arc maximums”

m∗
j (y) := sup{F (y, t) : t ∈ I∗j (y)}, j = 1, 2, . . . , n.

The correspondence between I∗k(y) and Ij(x), and also between m∗
k(y) and mj(x), can be

described easily. Fix c ∈ T arbitrarily and let y ∈ L. Then π−1
c (y1), . . . , π

−1
c (yn) ∈ [0, 1), moreover,

setting xj := π−1
c (yj), the coordinates of the vector x = (x1, . . . , xn) ∈ R

n follow according to

the cyclic ordering of the coordinates of y, that is, if yj ≺ c 4 yj+1, then x ∈ S
(σj)

[0,1]. Extending

the definition of πc and its inverse to vectors, we may write π−1
c (y) = x ∈ S

(σj)

[0,1]. Then we find

πc(Ik(x)) = πc([xσj (k), xσj(k+1)]) = I∗k(y) for k = 1, . . . , n − 1, while πc(I0(x) ∪ In(x)) = I∗n(y).
Accordingly, the interval and arc maxima correspond to each other as follows.

m∗
k(y) = mk(x) (1 ≤ k ≤ n− 1), m∗

n(y) = max(m0(x),mn(x)). (4)

Note that this representation does depend on the ordering of the xk, because I0(x) = [0, xσj (1)] =

[0, π−1
c (yj+1)] = π−1

c ([c, yj+1]), and In(x) = [xσj(n), 1] = [π−1
c (yj), 1] = π−1

c ([yj , c]).
In [7; 8; 10] we have already investigated the following minimax and maximin problems on the

interval [0, 1].

m(x) := max
j=0,1,...,n

mj(x) = sup{F (x, r) : r ∈ [0, 1]}, m(x) := min
j=0,1,...,n

mj(x),

M(S [0,1]) := inf{m(x) : x ∈ S[0,1]}, m(S[0,1]) := sup{m(x) : x ∈ S[0,1]}.

The analogous quantities on the torus are

m∗(y) := max
j=1,...,n

m∗
j(y) = sup{F (y, t) : t ∈ T}, m∗(y) := min

j=1,...,n
m∗

j(y),

M∗(L) := inf{m∗(y) : y ∈ L}, m∗(L) := sup{m∗(y) : y ∈ L}.

Note that m∗
n(πc(x)) = max (mn(x),m0(x)),

m∗(πc(x)) = m(x), (5)

and in view of (3) we also have6 M∗(L) = minj=1,...,nM(S
(σj)). However, there is no similar easy

formula for m∗(L).

3. Continuity results

In this section, we collect the continuity properties of maximum functions. First, we recall
Lemma 3.3 from [10]:

Lemma 4. Let n ∈ N, νj > 0 (j = 1, . . . , n), let J be an n-field function on [0, 1], and let K be

a kernel function on [−1, 1].
Then m : [0, 1]n → R is continuous.

6In fact, this formula provides an alternative way to prove Theorem 14, but not of Theorem 15, so we
have decided to follow the forthcoming approach.
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From this we easily deduce the following.

Proposition 5. Let n ∈ N, νj > 0 (j = 1, . . . , n), let J be a field function and let K be a kernel

function.

Then m∗ : Tn → R is continuous.

Proof. Let a ∈ T
n, a = (a1, . . . , an) be fixed and c ∈ T \ {a1, . . . , an}. We show that m∗ is

continuous in a small neighborhood of a. Let δ0 < minj=1,...,n distT (c, aj). We pull back y to [0, 1]n

coordinatewise: xj := π−1
c (yj), j = 1, . . . , n. Then xj ∈ (0, 1) and xj = xj(yj) is continuous (since

distT (yj, aj) < δ0, and π−1
c is continuous save at c), so x := x(y) := π−1

c (y) is changing continuously
in the given neighborhood of a. We may write that F (y, t) = F (πc(x(y)), πc(r)) where πc(r) = t
and after simplifying the notation, we simply write F (y, t) = F (x(y), r), with t ∈ T corresponding
to r := π−1

c (t) ∈ [0, 1).

Therefore, with (5), we see that m∗(y) = m(x(y)).

The continuity of m∗ at a follows from the continuity of x(y) at a and the continuity of m at x,
the latter coming from Lemma 4. �

We show continuity of the arc maxima functions m∗
j in some important cases.

Proposition 6. Let n ∈ N and k ∈ {1, 2, . . . , n} be fixed and let K1, . . . ,Kn be arbitrary kernel

functions.

(a) Suppose that J is an arbitrary n-field function and all Kj, j = 1, 2, . . . , n satisfy (∞). Then

m∗
k is extended continuous on L.

(b) Suppose that J is an extended continuous field function. Then m∗
k is extended continuous

on L.

(c) If J is an upper semicontinuous n-field function, then m∗
k is upper semicontinuous on L.

Proof. To see (a), let a ∈ L be fixed. If I∗k(a) 6= T, then let c ∈ T \ I∗k(a), c 6∈ {a1, . . . , an}.

Then there is a j ∈ {0, 1, . . . , n− 1} (see (3)) such that π−1
c (a) ∈ S

(σj)

[0,1]. Moreover, 0 < π−1
c (a1), . . . ,

π−1
c (an) < 1.

So, with (4) we can write m∗
k(y) = mk(x) when y ∈ L is close to a and x = π−1

c (y), x ∈ S
(σj)

[0,1].

Since π−1
c : L → S[0,1] is continuous near a, and by Lemma 3.1 from [10], mj : S[0,1] → R is

continuous, we obtain the assertion of this part.

If I∗k(a) = T, then we follow the same steps with c ∈ T \ {ak}, but the arc I∗k(a) –and all arcs
I∗k(y) with y close to a– necessarily split into two intervals via π−1

c (·), so we use the second half
of (4), and we get m∗

k(y) = max
(
m0(x),mn(x)

)
when y ∈ L is close to a. Continuing with the

same steps, we obtain the assertion.

The proof of (b) is straightforward.

The proof of (c) follows the same steps as that of (a), using Proposition 3.6 (a) from [10] and
that the maximum of two upper semicontinuous function is again upper semicontinuous. �

Example 7. If J is not continuous, and Kj does not satisfy (∞) then m∗
j is not continuous on L.

To see this, take y∗ ∈ T, where J is not continuous: we may assume y∗ = 1/2. Let n = 2 and
consider x = (x, x) where x ≈ 1/2. Then m∗

1(x) = supI∗1 (x) F (x, ·) = F (x, x) = J(x) + 2K(0) and
m∗

1((1/2, 1/2)) = F ((1/2, 1/2), 1/2) = J(1/2)+2K(0). Hence m∗
1(·) is not continuous at (1/2, 1/2).

Let us remark the Berge proved a maximum theorem about partial maxima of bivariate
functions, see, e.g., [2], but that result is not applicable here since his approach requires bivariate
continuity. In our case, J may be discontinuous, and continuity of mj or m is thus nontrivial.
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4. Perturbation lemmas

The first perturbation lemma describes the behavior of sum of translates functions when two
nodes are pulled apart. It appeared in several forms, e.g., in [6] (see Lemma 11.5), [14], Lemma 10
on p. 1069, or [8], Lemma 3.1. A similar form can be found in [11] (see around formula (15) too).

Lemma 8 (Perturbation lemma). Let K be a kernel function which is periodic (2). Let 0 ≤
α < a < b < β ≤ 1 and p, q > 0. Set

µ :=
p(a− α)

q(β − b)
.

(a) If µ = 1, then

pK(t− α) + qK(t− β) ≤ pK(t− a) + qK(t− b). (6)

holds for every t ∈ [0, α] ∪ [β, 1].

(b) Additionally, if K is strictly concave, then (6) holds with strict inequality.

(c) If µ = 1, then

pK(t− α) + qK(t− β) ≥ pK(t− a) + qK(t− b). (7)

holds for every t ∈ [a, b].

(d) Additionally, if K is strictly concave, then (7) holds with strict inequality.

Lemma 9 (Trivial Lemma). Let f, g, h : D → R be functions on some Hausdorff topological

space D and assume that

(i) either f, g, h are all upper semicontinuous,

(ii) or f, g are extended continuous and h is locally upper bounded, but otherwise arbitrary.

Let ∅ 6= A ⊆ B ⊆ D be arbitrary. Assume

f(t) < g(t) for all t ∈ A.

If A ⊆ B is a compact set, then

sup
A

(f + h) < sup
B

(g + h) unless h ≡ −∞ on A.

Proof. The straightforward proof of (i) was given in [8] as Lemma 3.2. The proof of (ii) is
similar, so we leave it to the reader. �

The following lemma is rather similar to Lemma 4.1. of [8]. However, there are several differences,
too, in which the below version is stronger than the former version. First, here we do not assume
upper semicontinuity of the field function, which was made possible by the observation that there
is a version of the Trivial Lemma which relaxes on that condition on h (even if using a little more
assumption regarding continuity of f and g, which, on the other hand, are clearly available). Second,
we assume non-degeneracy wi+1 > wi only for indices i ∈ I , again a delicate novelty in the current
version. Third, we drop the condition that K be monotone, an essentially necessary assumption for
the interval [0, 1], but, as is already told in the Introduction, not required in the periodic case. In
view of all these differences, as well as in regard of the slightly different setup of having only n arcs
defined by the n node points (and not n+1 intervals), we will present the full proof of the Lemma,
even if its basic idea and a large part of the details are repeating the former argument.
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Lemma 10 (General maximum perturbation lemma on the torus). Let n ∈ N be

a natural number, and let ν1, . . . , νn > 0 be given positive coefficients. Let K be a kernel function

on T, and let J be an arbitrary n-field function.

Let w ∈ L and I ∪ J = {1, . . . , n} be a non-trivial partition, and assume that for all i ∈ I, we

have wi < wi+1 (which holds in particular, independently of I, if w ∈ L).

Then, arbitrarily close to w, there exists w′ ∈ L \ {w}, essentially different from and less

degenerate than w in the sense that

w′
ℓ 6= wℓ unless {ℓ− 1, ℓ} ⊂ I or {ℓ− 1, ℓ} ⊂ J (8)

and7

w′
ℓ 6= w′

ℓ+1 unless {ℓ− 1, ℓ, ℓ+ 1} ⊂ J and wℓ = wℓ+1, (9)

(in particular, if w ∈ L then necessarily w′ ∈ L), and such that it satisfies

F (w′, t) ≤ F (w, t) for all t ∈ I∗i (w
′) and I∗i (w

′) ⊆ I∗i (w) for all i ∈ I; (10)

F (w′, t) ≥ F (w, t) for all t ∈ I∗j (w) and I∗j (w
′) ⊇ I∗j (w) for all j ∈ J . (11)

As a result, we also have

m∗
i (w

′) ≤ m∗
i (w) for i ∈ I and m∗

j(w
′) ≥ m∗

j(w) for j ∈ J (12)

for the corresponding torus maxima.

Moreover, if K is strictly concave, then the inequalities in (10) and (11) are strict for all points

in the respective arcs where J(t) 6= −∞.

Furthermore, for strictly concave K the inequalities in (12) are also strict for all indices k with

non-singular I∗k(w), i.e., when m∗
k(w) > −∞.

Proof. Before the main argument, we observe that the assertion in (12) is indeed a trivial
consequence of the previous inequalities (11) and (10), so we need not give a separate proof for that.

Second, the inequalities (10) and (11) follow from

f(w′, t) ≤ f(w, t) (∀t ∈ I∗i (w
′)) and I∗i (w

′) ⊆ I∗i (w) for all i ∈ I; (13)

f(w′, t) ≥ f(w, t) (∀t ∈ I∗j (w)) and I∗j (w
′) ⊇ I∗j (w) for all j ∈ J . (14)

Moreover, strict inequalities for all points t with J(t) 6= −∞ will follow from (10) and (11) if we
can prove strict inequalities in (13) and (14) for all values of t in the said compact arcs.

Furthermore, in case we have strict inequalities in (13) and (14) for all points t, then for non-
singular I∗k(w) this entails strict inequalities also in (12) (for the corresponding k). To see this,
one may refer back to the Trivial Lemma 9 (ii) with {f, g} = {f(w, ·), f(w′, ·)}, h = J , {A,B} =
{I∗k(w), I∗k (w

′)}. Here in the case when k = i ∈ I we need to use that the arc I∗i (w) is not degenerate
for i ∈ I , hence if it is nonsingular, too, then either J |I∗i (w′) ≡ −∞ and then we have the strict
inequality m∗

i (w) > −∞ = m∗
i (w

′), or J(t) > −∞ at some points of I∗i (w
′), and then using this

Lemma furnishes the required strict inequality. (The other case with k = j ∈ J is easier because
nonsingularity of I∗j (w) implies nonsingularity of the larger arc I∗j (w

′), too, and then the application
of the Lemma need not be coupled by considerations of an identically −∞ field.)

So the proof hinges upon showing (8), (9), (13) and (14), for any n-field function and any kernel
function, coupled with the strict inequality assertion in (13) and (14) for all t belonging to the said
compact arcs, in case K is strictly concave.

For n = 0 or n = 1 there is no nontrivial partition of the index set {1, . . . , n}, hence the assertion
is void and true.

7Note that here wℓ = wℓ+1 excludes ℓ ∈ I, so only J can contain all three indices listed.
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For n = 2 there is essentially only one way to split the index set in a nontrivial way, so the
statement will be part of the following, more general setup in Case 0, which we prove directly.
Actually, the n = 2 case can be proved directly from Lemma 8, but we will need the more general
Case 0 anyway.

Case 0. We prove directly the assertion when I,J contain no neighboring indices, so n must
be even and I and J partition {1, . . . , n} into the subsets of odd and even natural numbers from
1 to n.

We can assume that I = (2N + 1) ∩ {1, . . . , n} and J = 2N ∩ {1, . . . , n} (the other case being
a simple change of the cut, i.e., starting of the listing of the cyclic ordering of nodes from one node
later) .

Note that whenever wj ∈ J (i.e., when j is even), then we necessarily have j− 1, j+1 ∈ I , and
wj−1 < wj ≤ wj+1 < wj+2.

Denote δ := mini∈I |I
∗
i (w)|, (where |I∗i (w)| is the length of the arc [wi, wi+1]) which is positive

by condition.

Our new perturbed node system w′ will be, with an arbitrary 0 < h < 1
2δ/max{ν1, . . . , νn}, the

system

w′ := (w′
1, . . . , w

′
n) with w′

ℓ := wℓ − (−1)ℓ
1

νℓ
h, ℓ = 1, 2, . . . , n. (15)

The definition guarantees, that w′
ℓ = wℓ happens for no index ℓ, furnishing (8).

It is easy to see that by the choice of the perturbation lengths, no two consecutive nodes will
change ordering or reach each other: for j ∈ J wj, wj+1 are changed to become farther away, while
for i ∈ I wi, wi+1 are moved closer, but only by νih + νi+1h < δ < wi+1 − wi. It follows that the
ordering of nodes remains in L. (In a minute we will see that, moreover, there remains no degenerate
arc, so w′ ∈ L \ {w}.)

Obviously, I∗j (w
′) ⊃ I∗j (w) holds for all j ∈ J , and I∗i (w

′) ⊂ I∗i (w) holds for all i ∈ I , with the
inclusions strict, furnishing the second parts of (10) and (11) (matching the second parts of (13)
and (14), too). In particular, even if I∗j (w) may be degenerate for some j ∈ J , i.e., for some even j,
the jth arc of the perturbed system will not be such: w′

j < wj ≤ wj+1 < w′
j+1 for any even j ∈ J .

We get w′ ∈ L, entailing (9).

Take now an even indexed arc I∗2k(w) = [w2k, w2k+1], so 2k ∈ J . (When 2k = n, then we must
read 2k+1 = n+1 ≡ 1, i.e. w2k+1 = w1.) Our perturbation of nodes in (15) can now be grouped as
pairs of changing nodes w2ℓ−1, w2ℓ among w1, . . . w2k, and then again among w2k+1, . . . , wn, recalling
that n is even. Now, the pairs are always changed so that the arcs in between shrink, and shrink
exactly as is described in Lemma 8. We apply this lemma for each pair of such nodes with the
choices

a = w′
2ℓ−1, b = w′

2ℓ, α = w2ℓ−1, β = w2ℓ, p = ν2ℓ−1, q = ν2ℓ.

This gives that for each such pair of changes, for t outside of the enclosed arc (w2ℓ−1, w2ℓ) = I∗2ℓ−1(w)
we have

ν2ℓ−1K(t− w′
2ℓ−1) + ν2ℓK(t− w′

2ℓ) ≥ ν2ℓ−1K(t− w2ℓ−1) + ν2ℓK(t− w2ℓ). (16)

Note that I∗2k(w), hence any t ∈ I∗2k(w), is always outside of the arcs I∗2ℓ−1(w), therefore (16) holds
for the given, fixed t ∈ I∗2k(w) and for all ℓ. So we find

f(w, t) =

n/2∑

ℓ=1

(ν2ℓ−1K(t− w2ℓ−1) + ν2ℓK(t− w2ℓ))

≤

n/2∑

ℓ=1

(
ν2ℓ−1K(t− w′

2ℓ−1) + ν2ℓK(t− w′
2ℓ)

)
= f(w′, t).

Furthermore, all the appearing inequalities are strict in case K is strictly concave. We have
proved (14), even with strict inequality under appropriate assumptions.
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The proof of (13) runs analogously by grouping the change of nodes as a change of pairs
w2ℓ, w2ℓ+1 for ℓ = 1, . . . , n/2, writing w2(n/2)+1 = wn+1 = w1 according to periodicity. For these
arcs 2ℓ ∈ J and the arcs are getting larger after the perturbation, so outside these enlarged arcs–
that is, for all points which belong to any I∗2k−1(w

′) for some fixed k–the changed value f(w′, t)
will not exceed (and in case of strict concavity, will be strictly smaller than) f(w, t). This means a
nonincreasing (decreasing) change for all I∗i (w

′), entailing (13) together with the respective strict
inequality statement.

The proof of Case 0 is thus completed.

Therefore, we have also the case n = 2 proved. From here we continue our argumentation by
induction. Let now n > 2 and assume, as inductive hypothesis, the validity of the assertions for all
n∗ ≤ ñ := n− 1 and for any choice of kernel- and n∗-field functions.

In view of Case 0 above, there remains the case when there are neighboring indices k − 1, k
belonging to the same index set I or J . In view of the cyclic ordering and to avoid indexing
complications, assume that we also have 1 < k < n, which is a possibility for any n at least 3. We
separate two cases.

Case 1. Assume first that wk−1 < wk < wk+1 holds.
Then we consider the kernel function K̃ := K, and the ñ-field function J̃ := νkK(·−wk) (which

is indeed an ñ-field function because it attains −∞ only at most at one point, namely wk, in case K
is singular.)

Correspondingly, now the sum of translates function F̃ is formed by using ñ = n− 1 translates
with coefficients ν1, . . . , νk−1, νk+1, . . . , νn and with respect to the node system

w̃ := (w1, w2, . . . , wk−1, wk+1, . . . , wn).

Formally, the indices change: w̃ℓ = wℓ for ℓ = 1, . . . , k − 1, but w̃ℓ = wℓ+1 for ℓ = k, . . . , n − 1, the
kth coordinate being left out.

We apply the same change of indices in the partition: k is dropped out (but the corresponding
index set I or J will not become empty, for it contains k − 1); and then shift indices one left for
ℓ > k: so

Ĩ := {i ∈ I : i < k} ∪ {i− 1 : i ∈ I, i > k} and

J̃ := {j ∈ J : j < k} ∪ {j − 1 : j ∈ J , j > k}.

Observe that F̃ (w̃, t) = f(w, t) for all t ∈ T, while

I∗ℓ (w̃) =





I∗ℓ (w), if ℓ < k − 1,

I∗k−1(w) ∪ I∗k(w), if ℓ = k − 1,

I∗ℓ+1(w), if ℓ ≥ k.

(Here we make a little use of the choice that 1 < k < n, so we need not bother too much with the
cyclic renumbering etc.)

Note that I∗i (w̃) = [w̃i, w̃i+1] is still nondegenerate whenever i ∈ Ĩ, for the arc is either a former
arc belonging to some i ∈ I , or the union of two such arcs. Also, ordering of nodes is kept intact,

so w̃ ∈ L
(ñ)

(where L
(n)

and L
(ñ)

denote the cyclic simplices of the corresponding dimension).
Now we apply the inductive hypothesis for the new configuration. This yields a perturbed node

system w̃′ ∈ L
(ñ)

\{w̃}, arbitrarily close to w̃, with the asserted properties. It is important that here

the ordering of the nodes remain the order fixed in L
(ñ)

, so if w̃′ was closer to w̃ than the distance
δ of wk from {wk−1, wk+1}, then the n-term node system w′, obtained by keeping the nodes from
w̃′ and inserting back wk to the kth place (and shifting the following indices by one) will again be

ordered as w was, i.e., w′ ∈ L
(n)

(and of course 6= w, as already w̃′ 6= w̃). Moreover, w′
k = wk is

still not equal to any of the nodes w′
k−1, w

′
k+1, because distTn(w′,w) < δ.
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We now set to prove (8). First, if for some ℓ < k we have w′
ℓ = wℓ, then w̃′

ℓ =: w′
ℓ = wℓ =: w̃ℓ,

and then by the inductive hypothesis {ℓ − 1, ℓ} ⊂ Ĩ or J̃ . This gives (8) in case ℓ < k, because
below k the partition sets I and Ĩ (and J and J̃ , respectively), consist of the same indices.

Take now some ℓ > k with w′
ℓ = wℓ. Then w̃′

ℓ−1 =: w′
ℓ = wℓ =: w̃ℓ−1 and {ℓ − 2, ℓ − 1} ⊂ Ĩ or

J̃ by the inductive hypothesis. If it was ℓ > k + 1, too, then this means {ℓ − 1, ℓ} ⊂ I or J , that
is, (8).

If, however, ℓ = k + 1, then ℓ − 2 = k − 1 and ℓ − 1 = k, and by construction we get that
{k − 1, k + 1} ⊂ I or J . Given that we already have from the outset that k belongs to the same
index set as k−1, this altogether gives {k−1, k, k+1} ⊂ I or J , which is more than needed for (8).

Finally, if ℓ = k, then w′
k = wk by construction, but then we had by assumption that k− 1 and

k belonged to the same set I or J , so that (8) is satisfied.

Consider now the assertions of (9). As above, there is no problem with respective index sets all
remaining the same or all being shifted by one, i.e., if either ℓ < k − 1 or if ℓ > k + 1.

Recall that we assumed wk−1 < wk < wk+1 at the outset, and chose the perturbation small
enough to keep this strict ordering. Therefore, w′

k−1 = w′
k and w′

k = w′
k+1 are excluded, and only

the case of ℓ = k+1 and w′
k+1 = w′

k+2 remains to be dealt with. Now, w̃′
k =: w′

k+1 = w′
k+2 := w̃′

k+1,

so {k − 1, k, k + 1} ⊂ J̃ and w̃k := w̃k+1 according to the inductive hypothesis. The latter means
wk+1 = wk+2, while for the indices we obtain {k − 1, k + 1, k + 2} ⊂ J . But k − 1 and k belong
to the same index set, so that also k must belong to J , and therefore {k − 1, k, k + 1, k + 2} ⊂ J ,
entailing (9).

Using that k−1 and k belong to the same index set I or J , it is easy to check that I∗i (w̃
′) ⊆ I∗i (w̃)

for all i ∈ Ĩ is equivalent to I∗i (w
′) ⊆ I∗i (w) for all i ∈ I , and I∗j (w̃

′) ⊇ I∗j (w̃) for all j ∈ J̃ is
equivalent to I∗j (w

′) ⊇ I∗j (w) for all j ∈ J . Further, the assertions (10), (11) from the inductive
hypotheses lead to the assertions (13), (14) for the original case. Therefore, by the preliminary
observations also (10), (11) follow. Moreover, the assertion regarding strict inequalities for all t in
case of a strictly concave K follow from the respective strict inequalities for the inductive hypotheses,
noting that I∗k−1(w̃) = I∗k−1(w)∪ I∗k(w) can handle the necessary inequalities for both indices k− 1
and k, because these belong to the same index set I or J , and hence invoke inequalities in the same
direction.

Case 2. Consider now the case when some of the partition sets I,J contain some neighboring
indices k − 1, k, such that wk−1 = wk or wk = wk+1 holds, too. Then this index set cannot be I ,
for indices in I the respective arcs were supposed to be nondegenerate. So, k − 1, k ∈ J .

Repeating the above argument in Case 1 then works. Let us detail, why.

The main point where we needed that wk−1 < wk < wk+1 was where we wanted to see that the
new node system w̃′, provided by the induction hypothesis, not only preserves cyclic ordering of
nodes from w̃, but even with re-inserting wk and thus manufacturing w′ will still result in a point

belonging to L
(n)

.

Observe that the inductive hypothesis, in view of k−1, k ∈ J , furnishes that I∗k−1(w̃) is subject
to growth, so it will still contain the point wk, that is, w′

k−1 := w̃′
k−1 ≤ w̃k−1 := wk−1 ≤ wk ≤

wk+1 =: w̃k ≤ w̃′
k =: w′

k+1. It follows immediately that we will thus have w′ ∈ L at least.

Moreover, as above, equality of other perturbed and original nodes w′
ℓ and wℓ (ℓ 6= k) can occur

only when they occurred also in w̃, hence in w, too. Checking the arising conditions for the indices
can be done mutatis mutandis the above case, proving (8), on noting that for ℓ = k we already have
k − 1, k ∈ J by assumption.

To prove (9), assume now the identity w′
ℓ = w′

ℓ+1. Again, we separate cases according to the size
of ℓ and start with the case ℓ < k− 1. This implies w̃′

ℓ =: w′
ℓ = w′

ℓ+1 := w̃′
ℓ+1, hence also w̃ℓ = w̃ℓ+1

and ℓ − 1, ℓ, ℓ + 1 ∈ J̃ in view of the inductive hypothesis, so wℓ = wℓ+1 and ℓ − 1, ℓ, ℓ + 1 ∈ J ,
too. Similarly, if ℓ > k then the identity w′

ℓ = w′
ℓ+1 implies w̃′

ℓ−1 =: w′
ℓ = w′

ℓ+1 := w̃′
ℓ, hence also

w̃ℓ−1 = w̃ℓ and ℓ− 2, ℓ− 1, ℓ ∈ J̃ in view of the inductive hypothesis, so wℓ = wℓ+1 and if ℓ > k+1,
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then ℓ− 1, ℓ, ℓ + 1 ∈ J , too, while if ℓ = k + 1, then we get only k − 1, k + 1, k + 2 ∈ J , but then
again we remind to k ∈ J and get {k − 1, k, k + 1, k + 2} ⊂ J , proving (9).

It remains to deal with ℓ = k−1 and ℓ = k, which did not occur in Case 1 above. Now, ℓ = k−1
means that we have the identity w′

k−1 = w′
k. Since k − 1, k ∈ J by assumption, we also have

k − 1 ∈ J̃ , hence I∗k−1(w̃) cannot shrink, and therefore w̃′
k−1 ≤ w̃k−1. Moreover, if we had strict

inequality here, then we would have to have w′
k−1 := w̃′

k−1 < w̃k−1 := wk−1 ≤ wk =: w′
k, although

we supposed the contrary now. So, we must have w̃′
k−1 = w̃k−1, the inductive hypothesis applies,

and we derive that both k − 2 and k − 1 belong to the same index set – that is, because of k − 1,
to J . However, we already know by assumption also k ∈ J , so altogether {k − 2, k − 1, k} ⊂ J , as
needed.

The case ℓ = k is similar. If w′
k = w′

k+1, then taking into account that I∗k−1(w̃) cannot shrink

(as k − 1 ∈ J̃ ) we must have w′
k+1 := w̃′

k ≥ w̃k := wk+1 ≥ wk = w′
k entailing that all inequalities

are in fact equalities, and in particular both wk+1 = wk and w̃′
k = w̃k. Referring to the inductive

hypothesis this furnishes k − 1, k ∈ J̃ , that is, k − 1, k + 1 ∈ J , whilst k ∈ J by the original
condition, altogether yielding {k − 1, k, k + 1} ⊂ J , as needed.

So, we proved (8) and (9) for this case, too. The proof for the remaining inequalities and strictness
of them in case of a strictly concave kernel is identical to the argument in Case 1.

We thus conclude the proof of Case 2, whence the whole Lemma. �

Remark 11. Although the formulation of the Lemma is a bit complicated, one may note that
assuming wi < wi+1 for all i ∈ I is absolutely natural and minimal. Natural, because if we want
to decrease the arcs I∗i (w) for all i ∈ I , then these arcs must shrink, hence we cannot perform this
change when they are already degenerate one point intervals. Minimal, because we do not assume
similar conditions for any I∗j (w) with j ∈ J , so even the less that w ∈ L.

Remark 12. If we had w ∈ L from the outset, then we will as well have w′ ∈ L.

Corollary 13. If we only want respective inequalities for the m∗
j , without requiring strict

inclusions regarding the underlying intervals, then we can apply a further perturbation, now leading

to w′′ ∈ L (the point being that with different endpoint nodes ! ) and still satisfying the required

strict inequalities between the m∗
j , provided that we had strict inequalities (so, e.g., K was strictly

concave) and provided the m∗
j change continuously.

Note that this latter condition of continuity of the m∗
j is satisfied if K is singular or if J is

continuous, see Proposition 6 (a) and (c).

5. Minimax and maximin theorems

5.1. Minimax for strictly concave kernels

The following theorem contains, as a rather special case with the choice of the log-sine kernel
K(t) := log | sin(πt)|, the above stated Theorem 1.

Theorem 14. Let n ∈ N and ν1, . . . , νn > 0, let K be a singular, strictly concave periodic

kernel function, and let J be an arbitrary periodic n-field function.

Then there exists a minimax point w on L, it belongs to the open “cyclic simplex” L, and it is

an equioscillation point.

Proof. We already know that m∗ is continuous, thus it attains its infimum at a minimum
point (where, in view of m∗ : Tn → R, a finite minimax value is attained).

Now assume for a contradiction that the obtained minimax node system w is not an
equioscillating system. Then there are indices with m∗

i (w) = m∗(w), but not all indices are such.
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So, take I := {i : m∗
i (w) = m∗(w)} and J := {1, 2, . . . , n} \ I = {j : m∗

j(w) < m∗(w)}. These
index sets will define a nontrivial partition of the full set of indices from 1 to n.

In order to apply the Perturbation Lemma we will need that for i ∈ I the endpoint nodes are
different: wi < wi+1. Given that m∗

i (w) = m∗(w), this is certainly so in case K is singular, for then
m∗

ℓ(w) = −∞ < m∗(w) for any degenerate arc I∗ℓ (w). Let us now apply Lemma 10, which results
in a new node system w′, admitting the same cyclic ordering and lying arbitrarily close to w, and
with m∗

i (w
′) < m∗(w) for all i ∈ I . On the other hand, the m∗

j(w
′) may exceed m∗

j(w) for j ∈ J ,

but only by arbitrarily little, because w′ is sufficiently close to w and the m∗
j ’s are continuous on L

in view of the singularity of K, see Proposition 6 (a). So, in all, we will have m∗
k(w

′) < m∗(w) for
all k = 1, . . . , n, hence m∗(w′) < m∗(w), contradicting to minimality of w.

Noting that an equioscillation node system is necessarily nondegenerate for singular kernels, we
conclude the proof. �

5.2. Maximin for strictly concave kernels

Theorem 15. Let n ∈ N and ν1, . . . , νn > 0, let K be a singular, strictly concave periodic

kernel function, and let J be an arbitrary periodic n-field function.

Then there exists a maximin point z on L, it belongs to the open “cyclic simplex” L, and it is

an equioscillation point.

Proof. Again, as all the m∗
k are continuous, so is their minimum. The maximum of that

minimum is finite, because there are points with all m∗
k finite: e.g., take the above found minimax

point w. Given that K is assumed to be singular, that gives that such a point with m∗(z) > −∞
cannot be degenerate, i.e., z ∈ L. Also, by continuity of the m∗

k and hence of m∗, there exists a
maximin point z ∈ L.

Assume for a contradiction that this point is not an equioscillation point. Consider I :=
{i : m∗

i (z) > m∗(z)} and J := {1, . . . , n} \ I = {j : m∗
j (z) = m∗(z)}. This is a nontrivial partition

of the index set {1, . . . , n}, while z ∈ L, hence the Perturbation Lemma 10 can be applied, and we
are led to a new system z′ ∈ L, with m∗

j(z
′) > m∗

j(z) = m∗(z) for all j ∈ J . However, we also have
m∗

i (z
′) > m∗

i (z) − ε > m∗(z) for all i ∈ I , if ε was chosen small enough and z′ close enough to z,
because m∗

i is continuous. So, in all, we find m∗(z′) > m∗(z), and z could not be a maximin point.
The obtained contradiction proves the assertion. �

5.3. Extension to concave kernel functions

To extend Theorem 14 to general concave kernels, we apply limiting arguments similar to [10,
p. 18].

Theorem 16. Let n ∈ N and ν1, . . . , νn > 0, let K be a singular periodic kernel function, and

let J be an arbitrary periodic n-field function.

Then there exists a minimax point w∗ on L, it belongs to the open “cyclic simplex” L, and it is

an equioscillation point.

Proof. Let K be a singular, 1-periodic kernel function which is not necessarily strictly concave.
Let K(η)(t) := K(t) + η| sin πt| where η > 0. Then K(η) is a strictly concave kernel function,
which is also singular and 1-periodic. We will denote the corresponding maximum functions and
minimax quantity by m∗

j(η,y), m
∗(η,y), and M∗(η, L). Taking into account that K(η) converges to

K uniformly, we find the same for F (η, ·) ց F and hence even m∗(η,y) ց m∗(y) uniformly. Hence
M∗(η, L) ց M∗(L), too.

Let e(η) ∈ L be a node system such that m∗(η, e(η)) = M∗(η, L). By Theorem 14, e(η) ∈ L
and it is an equioscillating node system: m∗

1(η, e(η)) = . . . = m∗
n(η, e(η)). Since L is compact, there

exists ηk ց 0 such that e(ηk) → e for some e ∈ L as k → ∞.
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Then m∗(e) = M∗(L). Indeed, m∗(e) ≥ M∗(L) and for the other direction, let a > M∗(L).
Then for all sufficiently large k we have a ≥ M∗(ηk, L), so we can conclude

a ≥ M∗(ηk, L) = m∗(ηk, e(ηk)) ≥ m∗(e(ηk))

where we used m∗(η, ·) ≥ m∗(·). Letting k → ∞ we conclude, by the continuity of m∗ and by
e(ηk) → e, that a ≥ m∗(e) and M∗(L) ≥ m∗(e) follows. The claim is proved.

Next we claim that e is an equioscillation point. Indeed, assume for a contradiction that for
some j ∈ {1, . . . , n} we have m∗

j(e) < m∗(e). Then there is k0 ∈ N such that m∗
j (ηk0 , e) < m∗(e).

Since m∗
j (ηk0 , ·) is continuous (the kernel functions are singular; see Proposition 6 (a)), there is δ > 0

such that for every y ∈ L with distTn(y, e) < δ one has m∗
j(ηk0 ,y) < m∗(e), too.

There is n0 ∈ N such that for every k ≥ n0 we have distTn(e(ηk), e) < δ. So for k ≥ max{k0, n0}
we can write

m∗
j(ηk, e(ηk)) ≤ m∗

j (ηk0 , e(ηk)) < m∗(e) = M∗(L) ≤ m∗(e(ηk)) ≤ m∗(ηk, e(ηk)).

This is a contradiction, since m∗
i (ηk, e(ηk)) = m∗(ηk, e(ηk)) for each i ∈ {1, . . . , n}.

Therefore, e is necessarily an equioscillation point. As such, it cannot have any degenerate
subarcs, for any degenerate subarc I∗k(e) = {ek} would yield a singular value m∗

k(y) = −∞ according
to the singularity of K. Hence e ∈ L.

Choosing w∗ := e concludes the proof. �

Now we extend Theorem 15 to general concave kernels, but this time we approximate the kernel
from below.

Theorem 17. Let n ∈ N and ν1, . . . , νn > 0, let K be a singular periodic kernel function, and

let J be an arbitrary periodic n-field function.

Then there exists a maximin point z∗ on L, it belongs to the open “cyclic simplex” L, and it is

an equioscillation point.

Proof. Let K be a singular, 1-periodic kernel function which is not necessarily strictly
concave. Let K(η)(t) := K(t) + η(| sin πt| − 1) where η > 0. Then K(η) is a strictly concave
kernel function, which is also singular and 1-periodic and K(η) ր K as η ց 0, moreover this
convergence is uniform. Again, we denote the corresponding maximum functions and maximin
quantity by m∗

j(η,y), m∗(η,y) and m∗(η, L). Due to the uniform convergence of K(η)’s, we also

have m∗(η,y) ր m∗(y) uniformly, in the extended sense. Therefore m∗(η, L) ր m∗(L), too.
Let e(η) ∈ L be a node system such that m∗(η, e(η)) = m∗(η, L). By Theorem 15, e(η) ∈ L

and it is an equioscillating node system: m∗
1(η, e(η)) = . . . = m∗

n(η, e(η)). Since L is compact, there
exists ηk ց 0 such that e(ηk) → e for some e ∈ L as k → ∞.

Then m∗(e) = m∗(L). Indeed, m∗(e) ≤ m∗(L) and for the other direction, let b < m∗(L). Then
for all sufficiently large k we have b ≤ m∗(ηk, L), so we can conclude

b ≤ m∗(ηk, L) = m∗(ηk, e(ηk)) ≤ m∗(e(ηk))

where we used m∗(η, ·) ≤ m∗(·). Letting k → ∞ we conclude, by the extended continuity of m∗ and
by e(ηk) → e, that b ≤ m∗(e) and m∗(L) ≤ m∗(e) follows. The claim is proved.

Next we claim that e is an equioscillation point. Assume for a contradiction that for some
j ∈ {1, . . . , n} we have m∗

j(e) > m∗(e). Then there is k0 ∈ N such that m∗
j (ηk0 , e) > m∗(e). Since

m∗
j(ηk0 , ·) is continuous (the kernel functions are singular; see Proposition 6 (a)), there is δ > 0 such

that for every y ∈ L with distTn(y, e) < δ one has m∗
j(ηk0 ,y) > m∗(e), too.

There is n0 ∈ N such that for every k ≥ n0 we have distTn(e(ηk), e) < δ. So for k ≥ max{k0, n0}
we can write

m∗
j(ηk, e(ηk)) ≥ m∗

j(ηk0 , e(ηk)) > m∗(e) = m∗(L) ≥ m∗(e(ηk)) ≥ m∗(ηk, e(ηk)).
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This is a contradiction, since m∗
i (ηk, e(ηk)) = m∗(ηk, e(ηk)) for each i ∈ {1, . . . , n}.

Finally, if e is an equioscillating node system and K is singular, then necessarily e ∈ L, as
before.

So we proved that there is a node system z∗ := e, z∗ ∈ L for which m∗(z∗) = m∗(L) and z∗ is
an equiocillating node system. �

5.4. A counterexample for nonsingular kernels

Example 18. If K is not a singular kernel, then there can be no equioscillation, and no maximin
node systems. Moreover, all node systems can be solutions of the minimax problem.

Let K ≡ 0, and J(1/ℓ) := 1 − 1/ℓ (ℓ ∈ N), and J(t) := 0 otherwise. Let n := 2. Then there is
no equioscillation. We consider the following cases. If y1 = y2 = 0, then m∗

1(y) = 0 and m∗
2(y) = 1.

If y1 = 0, 0 < y2 < 1, then m∗
1(y) = 1 and m∗

2(y) = 1 − 1/ ⌊1/y2⌋. If y1 > 0 and y2 < 1, then
m∗

1(y) = 1− 1/ ⌊1/y1⌋ and m∗
2(y) = 1. It is easy to see that there is no equioscillating node system.

To verify the assertions about minimax node systems, note that m∗(y) = max(m∗
0(y),m

∗
1(y)) ≡ 1

hence every node system is a node system with the minimax value. By considering node systems
y = (0, 1/n), we get that m∗(L) = 1, but there is no node system with m∗(y) = 1.

6. A partial homeomorphism result

In our earlier papers [6; 8; 9] on the subject, an outstanding role was played by a new finding,
not seen in earlier works of Bojanov [3] and Fenton [11]. We established, that in case of singular
and strictly concave kernels a certain homeomorphism exists between admissible node systems
and differences of the interval or arc maxima. Since the differences all being zero is equivalent to
equioscillation, such a result immediately gives the existence and uniqueness of an equioscillating
node system. This entails that proving e.g. that the minimax point is an equioscillating system
can be strengthened to say that this equioscillation property characterizes the minimax node
system. Similarly, if we further prove that a maximin node system is necessarily equioscillating,
then it follows that the minimax equals to the maximin, and is attained at that unique point of
equioscillation. Furthermore, from the homeomorphism result further consequences could be proved,
most importantly about the intertwining of mj, see [8].

Above we have proved that minimax and maximin node systems exist and that they are
necessarily equioscillating node systems. Therefore it is most natural to try to complete the
picture by a corresponding homeomorphism theorem. In fact, even for the torus setup such a
homeomorphism theorem was already proved in [6], when there were no weights allowed, and where
we assumed a few technical assumptions, too. In our present notation Corollary 9.3 of [6] runs as
follows.

Theorem 19. Suppose that for each j = 0, . . . , n the kernel Kj belongs to C2(0, 1) with K ′′
j < 0

and satisfies (∞). Let S := {y ∈ T
n : 0 < y1 < · · · < yn < 1 be the open simplex, while y0 is

understood as fixed at y0 = 0.

Then the difference mapping Φ(y) := (m∗
1(y) − m∗

0(y), . . . ,m
∗
n(y) − m∗

n−1(y)) is a homeo-

morphism of S onto R
n.

Observe that here the n + 1 “to be translated” kernels admit a symmetry: if we rotate a node
system y := (y0, y1, . . . , yn) ∈ T

n+1 by say t ∈ T, then for the new system yt := (y0+t, y1+t, . . . , yn+
t) ∈ T

n+1 we get exactly the same vector of arc maxima m∗(yt) := (m∗
0(yt),m

∗
1(yt), . . . ,m

∗
n(yt)) ∈

R
n+1, hence in particular also the differences of these maxima remain the same as before. Therefore

it was natural to select one copy of these identical systems by fixing the value of y0–also this was
the only way the repetitions could be discarded and a homeomorphism could hold.
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In our current settings, however, there is an outer field J , too. Once the weight, i.e., the field
is not constant, we no longer have this rotational symmetry. The situation can be compared to the
previous case regarding K0(·−y0) not as a kernel with fixed y0, but just as an outer field. Theorem 19
just says that we have a homeomorphism if the field is strictly concave and singular, and all the
kernels satisfy the extra assumptions on differentiability etc. However, in this interpretation one
thing constitutes a major difference: if we take only the n element node systems (y1, . . . , yn) ∈ T

n

accompanied by a field (like e.g. J := K0(· − y0)), then there will be only n arcs, determined
by the nodes, so that the arc I∗n((y1, . . . , yn)) = [yn, y1] will be the union of the former two arcs
I∗n(y) = [yn, y0] and I∗0 (y) = [y0, y1]. Similarly, the maximums will form an n-dimensional vector
with m∗

n(y1, . . . , yn) becoming the maximum of the former two maxima m∗
n(y) and m∗

0(y). The
maximum differences then form an n − 1-dimensional manifold, and we can no longer hope for a
homeomorphism from the domain of our n-dimensional node systems to this manifold of differences.

To cure this, we may consider K0(· − y0) both a fixed kernel and also a field (say writing

K̃0 :=
1

2
K0 and J :=

1

2
K0(· − y0)). Then the result of Theorem 19 will refer to the original n + 1

arc maximums and their n differences, with a valid homeomorphism result.
With this in mind, we prove that an analogous “partial” homeomorphism theorem remains in

effect even if there is an arbitrary weight, i.e., field. In addition, we will surpass all the other technical
conditions of Theorem 19 by the more advanced technology we have developed in [9], capable of
handling even non-differentiable kernels. Instead of repeating the technical steps of that proof in
the torus context, we directly reduce the statement to results of [9]. In fact there we have made a
substantial effort to formulate and prove results which can potentially be used even in the periodic
case–and that investment brings a profit here enabling us to refer back to them. Actually, we will
use the following, proved for the case of the interval setup as Theorem 18 in [9].

Theorem 20. Let K1, . . . ,Kn be strictly concave, singular kernel functions fulfilling

condition (PM0) and let J be a field function satisfying either J(0) = limt↓0 J(t) = −∞ or

J(1) = limt↑1 J(t) = −∞ (or both).
Then the difference function Φ(x) :=

(
m1(x) − m0(x), . . . ,mn(x) − mn−1(x)

)
is a locally bi-

Lipschitz homeomorphism between Y := {(x1, . . . , xn) ∈ S[0,1] : mk(x) > −∞ (k = 0, 1, . . . , n)} ⊂
[0, 1]n and R

n.

Note that here the ordering of nodes is fixed according to the simplex S[0,1]; and given the
singularity condition, all degenerate node systems contain a degenerate arc with mk(x) = −∞, so
in fact the admissible set Y ⊂ S[0,1], too. Also note that a non-admissible node system from S[0,1]\Y
can never be an equioscillating node system, for m(x) > −∞ excludes equioscillation at the −∞
level. Thus in particular this entails existence and unicity of an equioscillating node system.

Theorem 21. Let n ∈ N, let K0,K1, . . . ,Kn be n+1 strictly concave 1-periodic kernel functions

and let J be a 1-periodic, otherwise arbitrary n+ 1-field function.

For any value a ∈ T denote Y ∗ := Y ∗(a) :=
{
y = (y0, y1, . . . , yn) ∈ L ⊂ T

n+1 : y0 =
a, mk(y) > −∞ (k = 0, 1, . . . , n)

}
.

Then the difference function Φ∗(y) :=
(
m∗

1(y) −m∗
0(y), . . . ,m

∗
n(y) − m∗

n−1(y)
)

is a locally bi-

Lipschitz homeomorphism between Y ∗(a) and R
n.

In particular, for each fixed value y0 = a there exists one unique equioscillating node system of

the form y(a) = (a, y1(a), . . . yn(a)) ∈ L.

Proof. First we introduce a new field function J∗ := J +K0(· − a). Obviously J∗ will then be
a 1-periodic upper bounded function which is nonsingular at more than n points mod 1 (while one
finite value, if J(a) was finite, could be “killed” by K0(·−a)). So, J∗ is an n-field function, and in view
of the singularity condition on K0 it also satisfies the extra singularity equation limt→a J

∗(t) = −∞.
Interpreting the Kj and J∗ as defined on the torus, we now transfer them to the interval [0, 1]

via the covering mapping πa. We put J̃(r) := J∗(πa(r)), which then becomes an n-field function
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on [0, 1] satisfying limr↓0 J̃ = limr↑1 J̃ = −∞. Also we put K̃j(r) := Kj(πa(r)−a) for all j = 1, . . . , n.
Obviously these are singular kernel functions, Which are strictly concave, too.

We apply the above Theorem 20 to this new system. Let us see what are the arising node systems
x ∈ Y . First, x ∈ S transfers to the cyclic ordering a 4 πa(x1) 4 . . . 4 πa(xn), so that writing
y := (y0, y1, . . . , yn) with y0 := a and yj := πa(xj) (j = 1, . . . , n), the ordering condition becomes
y ∈ L.

Second, the non-singularity conditions for x ∈ Y translate to those for y ∈ Y ∗(a), because
πa : Ik(x) ↔ I∗k(y) and

F̃ (x, r) = J̃(r) +

n∑

k=1

K̃k(r − xk) = J(t) +K0(t− a) +

n∑

k=1

Kj(t− yk) (t := πa(r))

makes a one-to-one correspondence between sum of translates function values on corresponding
points of any Ik(x) resp. I∗k(y); in particular, we find mk(x) = m∗

k(y), (k = 0, . . . , n), and an
arc I∗k(y) will be singular if and only if the corresponding interval Ik(x) was.

So we have seen that when y runs Y ∗(a) then x runs Y , and the correspondence is one-to-
one. Moreover, degenerate points do not satisfy the nonsingularity condition, hence Y ⊂ S[0,1] and
Y ∗(a) ⊂ L. This means that between node systems x and y, the mapping πa and even its inverse
π−1
a acts continuously, given that π−1

a is applied only to y1, . . . , yn off a.

Summing up, Φ∗(y) = Φ(π−1
a (y)), and even this composition mapping is continuous, moreover,

it maps one-to-one to R
n. Obviously its inverse Φ−1 ◦ πa is continuous, too, once Φ−1 was, so the

mapping is a homeomorphism between Y ∗(a) and R
n. We also get the bi-Lipschitz property from

that of Φ.

Finally, uniqueness of an equioscillating node system with given fixed y0 = a follows from the
homeomorphism result for Y ∗(a) (where we get exactly one system with all differences zero), and
from the fact that outside Y ∗(a) all node systems provide some singular value m∗

k(y) = −∞, while
equioscillation cannot take place on that level, for m∗(y) ∈ R, always.

Having proved the above, we may try to progress towards a Bojanov-type characteristaion
result. We already know that for the global minimax point there is equioscillation; and we now
established that for each fixed value of y0 there is exactly one equioscillating node system. So,
writing ϕ(a) = (a, y1(a), . . . , yn(a)) for this unique equioscillation point with y0 = a, it suffices to
look for the global minimum of µ(a) := m∗(ϕ(a)) over a ∈ T. The question is if these equioscillation
values are always the same – as we have seen in [6] when J ≡ 0 – or if µ(a) is non-constant. Unicity
of equioscillating node systems cannot hold (there is one for each fixed value a of the first coordinate
y0), but one may hope for unicity of the equioscillation value.

In Section 7, however, we will see that even this modified hope is deluded.

7. Counterexamples – equioscillation does not characterize minimax or

maximin, majorization occurs, minimax can be smaller than maximin

Bojanov’s Theorem [3] in the classical algebraic polynomial setting included an important
characterization statement, too: the extremal minimax system was characterized by the
equioscillation property. That is, there was exactly one equioscillating node system, which was
necessarily the minimax point.

Fenton’s classical theorem added another statement to the theory (in his context): he also proved
that the unique maximin point equals to the (unique) minimax point (and hence the maximin and
minimax values are equal, too).

In the weighted algebraic setting we proved similarly strong results in [8]. Also, we found the same
for the unweighted trigonometric setting in [6], save the trivial free rotation (which was discarded
by indexing from 0 and fixing the value of y0 in T).
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In this section we explore examples which show that we cannot expect as many results as for
the interval case or for the torus without weights. Basically, we will show that m∗(L) > M∗(L) does
occur.

Our examples will use a singular kernel, so by our above results minimax and maximin points
exist, moreover, they are equioscillation points. Therefore, the examples also mean that there
are different equioscillation values, hence strict majorization occurs even between equioscillating
node systems. Furthermore, we will choose the kernel to be the standard log-sine kernel K(t) :=
log | sin(πt)|. This means that even for the classical trigonometric polynomial case one cannot expect
any better results for general weights.

7.1. A counterexample with majorization

Example 22. Set K(t) := log | sin(πt)|, n = 2, ν1 = ν2 = 1, and J(t) = 0 on {0} ∪ [1/2, 1) and
J(t) = −∞ on (0, 1/2).

Then, the minimax and maximin values on the “cyclic simplex” L are m∗(L) = −2 log(2),
M∗(L) = − log(2), respectively.

Moreover, for any λ ∈ [−2 log(2),− log(2)] there is an equioscillating node system y ∈ L with
λ = m∗

1(y) = . . . = m∗
n(y).

In the following we will determine all equioscillation values.
We are to minimize m∗(y) (and maximize m∗(y)) on y ∈ T

2. By relabeling, if necessary, we can
assume y = (y1, y2) with 0 ≤ y1 ≤ y2 < 1.

First, we make the following simple observations about the behavior of the pure sum of translates
function. From the evenness of K it follows that f(y, ·) behaves symmetrically on the two intervals

before and after the midpoint
y1 + y2

2
on I∗1 (y) ∼ [y1, y2], and similarly for the other arc I∗2 (y). In

particular, f(y, ·) is strictly monotone increasing on
(
y1,

y1 + y2
2

)
and decreasing on

(y1 + y2
2

, y2

)
.

Similarly, it is strictly increasing on
(
y2,

y1 + y2
2

+
1

2

)
and strictly decreasing on

(y1 + y2
2

+
1

2
, 1+y1

)
.

Moreover, f is maximal on Ii(y) at the midpoint, and if the length of this interval is ℓ := |Ii(y)|,
the length of the arc Ii(y), then its value is 2K(ℓ/2). As for F (y, ·), it follows that on any of the
arcs I∗i (y) it attains its maximum on the point(s) of the arc which have J(t) = 0 and are closest to
the midpoint among those. Also note that among the two midpoints, which are exactly of distance
1/2, only one can belong to the singular set XJ = (0, 1/2).

In the following we use the variables x = y1+y2, z = y2−y1, by which we can express y1 =
x− z

2
,

y2 =
x+ z

2
.

Note that we cannot have 0 ≤ y1 ≤ y2 ≤ 1/2, for then m∗
1(y) = −∞, which cannot be an

equioscillation value, given that m∗(y) > −∞. Thus y2 ≥ 1/2, and we have x ≥ y2 ≥ 1/2, too.

So, let the first case be 1/2 ≤ x < 1. Then, the midpoint x/2 of the arc I∗1 (y) lies in [1/4, 1/2),
which is in the singular set (0, 1/2), hence the maximum will be attained at the closest nonsingular
point of the arc, which is 1/2. That is, m∗

1(y) = F (y, 1/2) = f(y, 1/2). Further, m∗
2(y) = F (y, x/2+

1/2) = f(y, x/2 + 1/2).
We will use the identity

f(y, t) = f
((x− z

2
,
x+ z

2

)
, t
)
= log

∣∣∣ sinπ
(
t−

x− z

2

)
sinπ

(
t−

x+ z

2

)∣∣∣

= − log(2) + log | cos(πz)− cos π(2t− x)| (t ∈ R).
(17)

With this, the equation f(y, 1/2) = f(y, x/2 + 1/2) can be rewritten as

∣∣∣ cos(πz)− cos π
(
2
1

2
− x

)∣∣∣ =
∣∣∣ cos(πz)− cos π

(
2
(x
2
+

1

2

)
− x

)∣∣∣.
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The right hand side is 1 + cos(πz). For the sign of the left hand side we observe x+ z = 2y2 ≥ 1,
hence 1− x ≤ z ≤ x ≤ 1, so by monotonicity of cos(πs) for 0 ≤ s ≤ 1, we get

∣∣∣ cos(πz) − cosπ
(
2
1

2
− x

)∣∣∣ = cos(π(1 − x))− cos(πz).

So we are led to the equation cos π(1 − x) − cos(πz) = cos(πz) + 1, and solving it for cos(πz)
yields

cos(πz) =
cos π(1− x)− 1

2
.

The condition 1− x ≤ z is satisfied, since cos π(1− x) ≥ (cos π(1− x)− 1)/2 in general. By simple
steps, the condition z ≤ x is equivalent to cos(πx) ≤ −1/3. So if 1/2 ≤ x ≤ β0 := arccos(−1/3)/π ≈
0.608, then z does not satisfy z ≤ x.

The arising equioscillation value is

m∗
2

((x− z

2
,
x+ z

2

))
= f(y, x/2 + 1/2)

= − log(2) + log
∣∣∣cos π(1− x) − 1

2
+ 1

∣∣∣

= −2 log(2) + log
(
1− cos(πx)

)

for β0 ≤ x ≤ 1.
The next case is 1 ≤ x < 3/2. Since x + z = y1 + y2 ≤ 2, we have 0 ≤ z ≤ 2 − x, too. Now

x/2 /∈ XJ , while x/2+1/2 ∈ XJ (except for x = 1 and x/2+1/2 = 1), with the closest nonsingular
point from I∗2 (y) being 1 (remaining valid even in case x = 1). Hence, m∗

1(y) = f(y, x/2) and
m∗

2(y) = f(y, 1). Now, again by (17), f(y, x/2) = f(y, 1) is equivalent to
∣∣∣ cos(πz)− cos π

(
2
x

2
− x

)∣∣∣ =
∣∣ cos(πz)− cos π

(
2 · 1− x

)∣∣. (18)

Here the left hand side is | cos(πz) − 1| = 1 − cos(πz). Also, 0 ≤ z ≤ 2 − x ≤ 1, so cos(πz) ≥
cos π(2− x), and (18) can be written as 1− cos(πz) = cos(πz)− cos π(2− x). Solving it for cos(πz)
we are led to

cos(πz) =
1 + cos πx

2
.

The condition 0 ≤ z ≤ 2 − x ≤ 1 on z is equivalent to 1 ≥ cos(πz) ≥ cos π(2 − x) = cos(πx) and
hence is obviously satisfied.

The equioscillation value, again depending only on x, is found again to be

m∗
2

((x− z

2
,
x+ z

2

))
= f(y, x/2)

= − log(2) + log
∣∣∣1− 1 + cos(πx)

2

∣∣∣
= −2 log(2) + log (1− cos(πx)) .

Finally, let 3/2 ≤ x < 2. This means that y1 ≥ 1/2, for x = y1 + y2 ≤ y1 + 1. Then again,
m∗

1(y) = f(y, x/2), for x/2 ∈ [1/2, 1]. However, in I∗2 (y) the closest non-singular point to the
midpoint x/2 + 1/2 ≡ x/2 − 1/2 mod 1 will be 1/2, and we will get m∗

2(y) = f(y, 1/2). Therefore,
the equioscillation equation becomes f(y, x/2) = f(y, 1/2) and, by (17), it is

∣∣∣ cos(πz) − cosπ
(
2
x

2
− x

)∣∣∣ =
∣∣∣ cos(πz)− cos π

(
2
1

2
− x

)∣∣∣.

The left hand is 1 − cos(πz) and the right hand side is | cos(πz) − cos πx|. Since 3/2 ≤ x < 2 and
z + x = 2y2 ≤ 2 implies 0 ≤ z ≤ 2 − x < 1/2, here both terms are nonnegative, and the equation
becomes

1− cos(πz) = cos(πz) + cos πx.
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Solving it for cos(πz) we get

cos(πz) =
1− cos(πx)

2
.

Again, we verify that 0 ≤ z ≤ 2 − x, which is equivalent to 1 ≥ cos(πz) ≥ cosπ(2 − x). The
second inequality is equivalent to cos(πx) ≤ 1/3, and it holds for x ∈ [3/2, 2] if and only if x ≤
2− arccos(1/3)/π = 1 + β0, 1 + β0 ≈ 1.608. So z ≤ 2− x if and only if x ∈ [3/2, 1 + β0].

The equioscillation value is

m∗
2

((x− z

2
,
x+ z

2

))
= f(y, 1)

= − log(2) + log
∣∣∣1− 1− cos(πx)

2

∣∣∣
= −2 log(2) + log (1 + cos(πx)) .

Now we can collect the obtained equioscillation values coming from all the three cases:

m∗
1(y) = m∗

2(y) = −2 log 2 +

{
log(1− cos(πx)) (β0 ≤ x < 3/2)

log(1 + cos(πx)) (3/2 ≤ x < 1 + β0)

It is minimal when x = 3/2 (in this case z = 1/3) and it is maximal when x = 1 (in this case
z = 1/2). The corresponding values are −2 log(2) ≈ −1.386 and − log(2) ≈ −0.693.

Hence we get M∗(L) = −2 log(2) and m∗(L) = − log(2).

7.2. A modified counterexample with continuous field function

In this subsection we sketch a counterexample which is a modification of the previous one, but
with a continuous field function.

First, we set a new external field function J̃ , and then we compute the arc maxima for the
two extremal node systems from the previous counterexample. We will find that the arc maxima
m∗

i (y) of those two node systems will not change when we replace J̃ for J , whence they will still be
equiocillating with the same equioscillation values − log 2 and −2 log 2, respectively.

Let α > 4π be fixed and let J̃ be 0 on [1/2, 1], −αt on [0, 1/4) and α(t − 1/2) on [1/4, 1/2);
further, let J̃ be extended 1-periodically to R.

Regarding the x = 1, z = 1/2 maximin configuration, we have y1 = 1/4, y2 = 3/4. It is easy
to check that f(y, t) is strictly monotone decreasing on (0, 1/4] and on [1/2, 3/4) and it is strictly
monotone increasing on (1/4, 1/2] and on (3/4, 1]. Hence, F̃ (y, t) = J̃(t) + f(y, t) is the same
monotone in these intervals. Therefore m̃∗

1(y) = F̃ (y, 1/2) = F (y, 1/2) = f(y, 1/2) = − log(2) and

m̃∗
2(y) = F̃ (y, 1) = F (y, 1) = f(y, 1) = − log(2).

Regarding the x = 3/2, z = 1/3 minimax configuration, we have y1 = 7/12, y2 = 11/12. It
is easy to check that f(y, t) is strictly monotone increasing (and concave) on (−1/12, 1/2] and
f ′(y, 0) = 4π. Adding J̃ to it, we see that F̃ (y, ·) is strictly monotone increasing on (−1/12, 0]
and strictly monotone decreasing on [0, 1/4). Using the symmetry of F̃ (y, ·) with respect to 1/4,
F̃ (y, ·) is strictly monotone increasing on (1/4, 1/2] and strictly monotone decreasing on [1/2, 7/12).
Moreover, m̃∗

1(y) = F̃ (y, 0) = F̃ (y, 1/2) = f(y, 0) = −2 log(2). Computing m̃∗
2(y) is simpler: for

t ∈ I∗2 (y) = (7/12, 11/12) ⊂ [1/2, 1], F̃ (y, t) = f(y, t) = F (y, t), and sup f(y, ·) remains the same

as before. Therefore, m̃∗
2(y) = F̃ (y, 3/4) = f(y, 3/4) = −2 log(2).

Summing up, we obtained that m̃∗(L) ≤ −2 log(2) and M̃∗(L) ≥ − log(2). Also, taking into

account that J̃ ≥ J , hence F̃ ≥ F , we also know that m̃∗(L) ≥ m∗(L) and M̃∗(L) ≥ M∗(L).

Therefore, M̃∗(L) = −2 log(2), too.
Even if we don’t proceed to compute the exact maximin value, too, it is clear from what has

already been done that in this example m̃∗(L) ≥ − log(2) > M̃∗(L) = −2 log 2, hence the same
phenomenon takes place for the continuous, finite kernel J̃ as before for the kernel J .
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REFERENCES
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Béla Nagy, Department of Analysis, Bolyai Institute, University of Szeged Aradi vértanuk tere 1,
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