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POWER DEGREES IN DYNAMIC MULTI-AGENT SYSTEMS!
Leon Petrosyan, David Yeung, and Yaroslavna Pankratova

Dynamic multi-agent systems connected in network are considered. To define the power of each agent the
analogue of characteristic function is introduced. The values of this characteristic function for each coalition
(subset of agents) are calculated as joint payoff of players from this coalition plus payoffs (multiplied on some
discount factor) of players which do not belong to the coalition S but have connections with players from S.
We suppose that the dynamic of the system is prescribed (this maybe cooperation, Nash equilibrium or any
other behaviour). Thus, the characteristic function is evaluated along the prescribed trajectory of agents. And it
measures the worth of coalitions under the motion along this trajectory instead of under minimax confrontation
or the Nash non-cooperative stance. As solution we consider the proportional solution and introduce Power
degrees of an agent based on proportional solution. It is shown that the Power degree (PD) belongs to the Core.
PD rank agents according to their importance.
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JI. A. Ilerpocsn, . B. K. dur, 5. B. ITaukparoBa. IHIeKC 3HAYNMOCTA B JUHAMUYECKUX MHO-
rOareHTHBIX CHUCTEMAaX.

PaccMmarpuBaroTcss quHaMu4YecKne MyJIbTHAreHTHBIE CHUCTEMBbI Ha CeTH. J[JIs onpejiesieHnsl CHIIbI UIPDOKa BBO-
JUTCs AHAJIOI XapaKTEPUCTHUYECKON (DyHKIMHM. 3HAYEHUs] ITON XapaKTEPUCTHUIECKOW (MYHKIMHM IS KaXKJI0H
KoaJIUIUK (IIOJMHOXKECTBA ar€HTOB) PACCYMTHIBAIOTCS KaK COBMECTHBIN BBIUTDBIII UTPOKOB (areHTOB) U3 TON
KOAJIUIUU TIPU JIBUKEHUH BIOJIb IIPEAITUCAHHON 3apaHee TPACKTOPHUH IVIIOC BBHIMI'DBIIIN, YMHOXKEHHbBIE HA HEKO-
TOPBI KO3(hDMUIMEHT JUCKOHTUPOBAHNS, NIPOKOB (Ar€HTOB), KOTOPBIE He IPUHAJIEXKAT KOAIUIUN S, HO UMEIOT
cBsa3u ¢ urpokamu u3 S. IIpesmonaraercs, 9To AMHAMMKA CUCTEMBI IPEIUCAHA 3apaHee (3TO MOXKET OBITH KOOIIe-
pPATHUBHOI NOBeJieHNe, ABMXKEHUE B paBHOBecuu 1o Hamury, mim kakoil smbo apyroe apuzkeHue). XapaKTepUCTH-
decKast (DYHKIUs, BbIYUCIAEMast BIOJIb IPEIINCAHHON TPAEKTOPUU AreHTOB, M3MEPSET 3HAYUMOCTDH KOAJIUIIUMA
[IpU JIBUKEHUU BJIOJIb STON TPAEKTOPHUH, & HE B YCJIOBUAX MUHMMAKCHOIO IIOAXOJa WU paBHOBecus 1o Hsmry.
B kadecTBe peleHnsi Mbl pacCMaTPHBaeM IIPOIOPIHMOHAJIBHOE PEIIeHNe U BBOJUM IIOHSITHE MHJIEKCA 3HAYMMO-
CTU areHTa, OCHOBAHHOE€ Ha IIPOIOPIMOHAJLHOM pelleHnu. BeKTOp, COCTaBJIEHHBIN W3 WHIEKCOB 3HAYMMOCTH,
PaHXKHUPYeT areHTOB B COOTBETCTBUM C MX BAXKHOCTBHIO. [loka3aHO, YTO BEKTOP, COCTABJIEHHBIN U3 HMHIEKCOB
3HAYUMOCTH areHToB, npuHaiexkut C-sapy. Vccaenyercss BOOPOC yCTOMYUBOCTU PAHXKUPOBAHMS Ar€HTOB IIPU
Pa3BUTUM MYJIbTUAN€HTHOU CHCTEMBI BJOJb IPEAINCAHHON TPAeKTOPHUU.

Kirouesnie cioBa: MyJIbTHAreHTHad CuCTeMa, IIPOIIOPIUOHAJBbHOE PEeHIeHne U UHAEKC 3HAIYNMOCTHU.
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Recently, many interesting problems have been modelled using differential games on networks.
The first pioneering papers in this field are [1-5]. An obvious continuation of research in the field
of dynamic games is to extend them to the class of cooperative dynamic games on networks (the
following papers should be noted [6], and the paper of [7-9]). Different properties of the cooperative
solutions of dynamic network games are investigated in [10]. In the paper [11], the differential games
on networks with partner sets are considered. In this paper, we consider cooperative behaviour
only as one of possible behaviours of agents. We suppose that multi-agent system develops along
the prescribed trajectory (in some cases, this trajectory can coincide with cooperative or Pareto
optimal, or NE trajectory). The values of characteristic function for each subset of agents (coalition)
are calculated as joint payoff of agents from this coalition plus payoffs (multiplied on discount factor
depending from S) of agents which do not belong to the coalition S but have connections with
agents from S. This setting can be interpreted as a realisation of sanctions by agents from N\S
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against agents from S. The characteristic function is evaluated along the prescribed trajectory. And
it measures the worth of coalitions under motion along this trajectory instead of under minimax
confrontation or the Nash non-cooperative stance. It can be seen that the new characteristic function
is superadditive under some conditions. In this paper, we introduce the Power degree of an agent
based on proportional solution.

1. Dynamic Multi-Agent System Connected in Network

Consider a class of n-person dynamic multi-agent systems on network with time horizon [tg,T].
The agents are connected in a network. We use N = {1,2,--- ,n} to denote the set of agents in
the network. The nodes of the network are used to represent the agents from the set N. We also
denote the set of nodes by N and denote the set of all arcs in network N by L. The arcs in L are
the arc (i,7) € L for agents i,j € N, i # j. For notational convenience, we denote the set of agents
connected to agent i as K (i) = {j: arc(i,j) € L}, fori € N.

Let 2°(17) € R™ be the state variable of agent i € N at time 7, and v*(7) € U* C R¥ the control
variable of agent representing his communication efforts i € N.

In previous models [12; 8|, it was supposed that agent ¢ € N can cut connection with any other
agent from the set K (7) at any instant of time. In this paper, we exclude this possibility.

The state dynamics of the system is

&'(r) = fi(2'(r),u' (1)), a'(to) = xp, (1)

for 7 € [to, T] and i € N,u'(7) € U C CompR..
The function fi(z*,u’) is continuously differentiable in 2% and u’.

The payoff function of agent i depends upon his state variable and the state variables of agents
from the sets K (i).

In particular, the payoff of agent i is given as

T

Hiah sty = 30 [ b, (r)ar 2)
FEK () to

The term hg (2%(7),27(7)) is the instantaneous gain that agent i can obtain through
communication with agent j € K (i) (note that the pair (i,i) ¢ L). The functions hg(:ni(T),xj (1),
for j € K (i) are non-negative and continuous. For notational convenience, we use z(t) to denote
the vector (z!(t),z2(t), -+ ,z"(t)).

2. Characteristic Function

In this section, we introduce a new type of characteristic function which differs from one defined
in paper 6] and after used in [12; 8|.

Suppose that agents for some reason decide to move along prescribed trajectory subject to
dynamics (1).

Denote this trajectory by Z(t) = (z'(¢),z%(t),--- ,2"(t)) and corresponding controls u(t) =
(al (t), ﬂz(t)7 e 7an(t))'

The joint payoff involving all agents will be expressed as

T
Z( > /hf(fi(T),fj(T))dT> = V(N;zo, T — o) (3)

€N N\ jeK (i) iy

subject to dynamics (1).
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For each S C N define the characteristic function which represent the worth the coalition S C N

T T
V(S; 29, T—to) zzl 3 /hg(xi(T),xj(T))dr + als) Y /h{(mi(r),xj(f))dfl, (4)
ieS LjeR(i)nsi, JEK (I)NN\S iy

a(S) € (0,1) is the discount factor, and the quantity (1 —«(S)) can be interpreted as sanction level
used by coalition N\S against coalition S.

Note that the worth of coalition S is measured by the sum of payoffs of agents in the coalition
when the process develops along the prescribed trajectory z(t) = (z'(t), Z%(t),--- ,2"(t)) plus the
sum of payoffs (multiplied on discount factor «(.S)) of agents which do not belong to the coalition S
but have connections with agents from S. This shows that players from opposite coalition N\S
acting against coalition S decrease the income of coalition S.

For simplicity in notation, we denote

T
(oo T~ ty) = [ W(a'(r), 21 (r))ar (5)

B, (5(6), T — 1) /hﬂ )5 (7))dr, 1€ [fo,T). (6)
Using notations (5), (6), we can express (4) as
V(S;z0,T—tg) =3 | Y Bij(zo, T —to) +(S) > Bijlw, T —to)|. (7)
€5 " jeK(i)NS JEK(H)NN\S

Suppose that the following condition holds «(S7) < «(S2), for S C Sz, S1 € N, Sy C N. This
condition means that the sanction level (1—a(S)) is decreasing when the size of coalition S increases.
It can be understood from practical view point since sanction against large coalitions are usually
less effective than against small ones.

Proposition 1. Under above conditions, the characteristic function defined by (4) is superad-
ditive.

Proof. Prove the following inequalities:
V(Si;20,T —to) + V(S2320, T — o) < V(S1 U S2520,T — to) (8)

where S1 NSy =
Using (4), we have
V(Sl; xg, T — to) + V(SQ; xg, T — to)

:Z{ 7 Bilae. T —to) + a(S1) > Bilw. T )]

€51 " jeK(i)NSy JEK()NN\S1
+ Z [ Z Bij(zg, T —to) + (S2) Z ﬁij(ﬂﬂo,T—tO)]
i€S2 " e K (i)NSs JEK())NN\S2

In the square brackets of previous formula we have the payoff of player i, when i € S1 or i € Ss.
Denote it by K;(S). Consider the payoff of player ¢, i € Sy

KZ(Sl) = Z B,-j(azo,T — to) + a(Sl) Z ,Bij(xo,T— to)

jeK(i)NSy jEK (i) NN\S,
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and compare this payoff with payoff of player i if i € S1 U Sy

Ki(S1USy) = > Bijlag, T —t) + a($1USy) > Bijlag, T —to)
jeff(i)ﬁ(51U52) jER(i)ﬁN\(SlLJSz)
= > Bylae.T—t)+ Y. Bijle, T —to) +a(S1US) Y Bij(zo, T — to).
JEK(i)NSy FEK(i)NSy FEK ())NN\(S1US2)

Since S1 N Sy = @ we can rewrite K;(S1):

Ki(S1) = Y Bilag, T —to)

JEK(1)NSy
+a(S1) Y Biylwe, T—to)+a(S) >, Byleg,T—t) < Y By, T —to)
JEK(3)NSa FEK (1)NN\(S1US2) JEK(H)NS1
+ a(S1USy) > Bijlag, T —to) + a(S1US) > Bij(zo, T — to) ()
FEK(1)NS2 FEK(H)NN\(S1US>)
< Z Bij(xo, T — to)
jEK(i)NSy
+ Z ﬁij(l‘O,T—to) + Oé(SlUSQ) Z 6ij(:L'O,T—t0) :Ki(51USQ),

jEK(1)NSy FEK({H)NN\(S1US>2)

for any ¢ € S1, similarly (9) holds for 7 € Sa. And we get that each summand in the left side of (8)
is less or equal to the corresponding summand in the right side of (8).
Hence proposition is proved. ]

3. Special Type of Imputations

In this section, we introduce the proportional solution using the defined characteristic function.

Now, we consider allocating the grand coalition cooperative network gain V (N;xo, T —t() along
prescribed trajectory to individual players according to the the proportional solution.

To define the proportional solution compute first the values V({i}) for i = 1,...,n (the case

when S = {i}). .

V({iY;zo, T —to) = a({i}) - ) /h?(f"(T)’fj(T))dT, (10)
JER ()t
since K (i) N N = K (i). The proportional solution {p;(zo,T —ty)} can be written in the form
V{i}; 2o, T — to)

pi(wo, T —to) = ZV({i};xO,T—to) -V(N;20,T —to)
ZGTN o |
o)) X [ wia). i 1)
_ JEK (3) —— . “V(N;20,T — ).
Salih X [ HE . )
i€N jeR (@) M

If we consider the special case when a({i}) = a, i € N, using (3) we get
T
plenT—t) = Y [ b@(r).a(r)ar.
JEK (i) i
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Proposition 2. Proportional solution is time-consistent and belongs to the Core of the

corresponding cooperative game (the case, when a({i}) = «a, i =1,...,n).
Proof.
T
planT—to) = 3 [ W@ (@), 5/ (r)ar
JEK (D)o

¢ T
S /hg(xi(T),xj(T))dr S /hg(xi(T),xj(T))dT (12)
JEK (1)t JEK (i) ¢
t
= ¥ [HE @+ plo,7 -1,
JEK (i)t
This shows time-consistency of the proportional solution.
Also for any coalition S C N we have

T
S o T—t) =3 Y /h{(fi(f),fj(f))ch

€S €S ek (i
. JeK (i) to (13)
2> Y [ HEP @ = VisianT 1)
€5 jeK(i)NS ty
Inequality (13) shows that vector (py(zo,T —to),...,Pn(x0, T — to)) belongs to the Core [§].
Hence Proposition 2 follows. O

4. Power Degree of an Agent Based on Proportional Solution

Network interactions in time were considered in [3;13]. Unlike the [6;7] here we will not assume
that agents seek to somehow optimize their influence, but we assume that the system develops in a
certain way and we will only investigate the issue of its stability from the point of view of preserving
the influence of agents in the process. To determine the degree of influence of agents, one can use
both the Shapley value or the proportional solution. In this paper, we shall use the proportional
solution.

As we defined before the multi-agent system develops along a prescribed trajectory z(t),
t € [to, T]. In each time instant ¢ € [tg, T] agents find themselves in a point Z(¢) on this trajectory.
Thus, the Power degree of an agent based on proportional solution at time ¢ € [ty,T] will be equal
(the case a({i}) =, i=1,...,n)

T
pi(Et), T —t) = Y _ /hg(xi(T),xj(T))dT.
JEK() t
Suppose that agents are numerated such way that
p1(xo, T — to) > po(xo, T —to) > ... > pplxo, T — to). (14)
Consider now Power degree of agents at time instant ¢ € [to, T

pi(z(t),T —t), i€ N,
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when the system develops along prescribed trajectory Z(t) under control @(t). We shall call the
trajectory (development) Z(t) stable if

p1(z(t), T —t) > po(T(t), T —t) > ... > pu((t), T —t), tE [to,T]. (15)

The stable development (trajectory) is a rare event. It is sometimes important that (15) holds for
a some kind of optimal trajectories (cooperative trajectory, Pareto optimal trajectory, NE trajectory
and etc.)

It is clear that if the functions hg(:fi(T),JI_Zj(T)) = lzzz = const (do not depend on time) the
condition (15) will always hold. Since in this case

pi(Z(t) = Y R(T-t)y=(T-1) Y k.
JEK (i) JEK (i)
And the condition (15) will be equivalent to
S>> B> Y R
JER(1) JER(2) JER(n)

If lzlf = 1, then p;(Z(t),T — t) is proportional to the number of arcs which connect agent i
with other agents from network IN. Then the introduced Power degree coincides to one considered
earlier [14], and it is of course stable.

One can see that stability condition (15) can be satisfied if we could change instantaneous
payments hl(z'(1),z7 (1)), 7 € [to,T], i € N, j € K (i) preserving the total payment

T
/ B (& (7), 2 (7)) dr.

For this reason, we can use the classical mean value theorem

/h] )3 (1)) dr = /h )T = W (0,)(T — to), 65 € [to, ).
Then the condition (14) can be written as

STOR0) = > By0y)=...= > K0

JEK(1) JEK(2) JEK(n)
It is clear that if we replace stage payments hg (z(7), 27 (7)) by hg (0;) on time interval [to,T]]

the stability condition (15) will hold on the whole time interval of multi-agent system development.
The same approach can be used if as Power degree we shall consider the Shapley value.

5. Examples

Example 1. Consider the following 3 player network game (see Fig. 1).

1 2
@ ® °

w

Fig. 1. Three player network game.
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Denote for convenience V' (S;zo, T —to) as V(5), S C N, Bj(x0.T —to) as Bij, and B;;(Z(t), T —t) =
Bi;(t). For this network structure the values of characteristic function are defined as

V{1 = a({1})f2,  V{2}) = a{2D) (B + B23),  V({3}) = a({3})Fz2,

V({1,2}) = B2 + Bo1 + a({1,2}) 523, V({1,3}) = a({1,3})(B32 + Pr2),
V({2,3}) = Bz + B32 + a({2,3}) 21,  V({1,2,3}) = B12 + Pa1 + B2z + B32.

Computing the proportional solution using (10) we have

_ a({1})Bi2
p1(xo, T —tg) = a(11)B1a = o((2}) (Bor + Pa) + ({31 Bsa (Br2 + Pa1 + Paz + P32),
_ a({2})(Ba1 + Ba3)
p2(xo, T —tg) = a(11)B1a = a({2)) (Bor & Pas) + ({31 Bsa (Br2 + Pa1 + P23 + P32),
p3(wo, T — to) a({3}) Bz (B12 + Ba1 + P23 + B32)-

~ a({1N)Bi2 + a({2})(Bar + Bas) + a({3})Bs2

To make a conclusion about stability of prescribed trajectory we should compare the power
degrees of agents at each time instant ¢, ¢ € [tg, T] according to proportional solution.

To understand the relation between components of proportional solution it is sufficient to
consider the relations between the numerator

a({1})B12, a({2})(B21 + B23), a({3})pB32.

In this example, we shall suppose that instantaneous payoffs h{ (z%(7),27(7)) are constant (do
not depend on time), and are equal to

hi(t) =2, hy(t) = 3,h3(t) =4, h3(t) =5, t € [to, T,

then
e P = i i A
P01 =) = ot )
p3(Z(t), T —t) = sa({3)) 14(T — t).

- 2a({1}) + 7a({2}) + 5a({3})

In case a({1}) > ga({2}), a({1}) > ga({?)}) and a({2}) > ga({?)}) we will have the following

relation between Power degrees p1(Z(t),T —t) > pa(Z(t), T —t) > p3(z(t),T —t) for any ¢ € [to, T},
which means the stability of Power degree.
In special case, when a({i}) =, i=1,...,n), we get

U@, T — 1) = 2T — 1), pa(@(t), T —1) = (T — 1), pa(a(t), T — 1) = 5(T —1).
Calculate the Power degrees using the Shapley value [15]

+ %(m({l}) +ao({1,3})) - %(M({z, 3}) +a({2})

P32
6

_|_
Sha (oo, T — 1) = P22 01

+ 22 a(1,2) — a(f21) + 22 (a((1,3) — a((3)),
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Sholawg, T — to) = 222012 | Pos B2 | P10 rony (12, 3))

2 2 6
B32 Ba3
6

Ba3

b2

( a({1,3}) +a({1})) - ( a({1,3}) + a({3})) + =~ (a({1,2}) +2a({2})),
P23 + B32 532

Shao, T 1) = 22522 4 P92 50451) 4 a((1,31) — 2 (20({1,2}) + a({2)))
+ 220 ((1,3) — a((1)) + 2 (a((2,3)) — alf2})).

Using the values of instantaneous gains introduced above for prescribed trajectory Z(t), t € [to, 1],
and suppose that a(S) = «, S C N find the Shapley value in time instant ¢t € [to, T

Shy(2(8), T — ) = > ST 1), Sho(a(), T~ 1) =TT 1), Shsa(t),T —1) = Ita

(T —t).
It is interesting that for the second player Power degree which corresponds to the proportional
solution coincides with Power degree which corresponds to the Shapley value for any «.

Example 2. Consider the following 5 player network game (see Fig. 2).

In this case, we shall consider only proportional solution, and as result the following values of
characteristic function

V({1}) = a({1})(Brz + B1a + B15), V({2}) = a({2})(B21 + Bas + Pa3),
V({3}) = a({3})B32, V({4}) = a({4})(Bar + Baz + Bus), V({5}) = a({5})(Bs1 + Bs4),
V({1,2,3,4,5}) = Br2 + Bo1 + Bra + Bar + Bis + P51 + Pz + P32 + Pos + Paz + Bas + Bsa-

Suppose that the instantancous gains hg(:ii(t), Zj(t)) are constant on prescribed trajectory z(t), i.e.
hl(z;(t),z;(t)) = h] and take the following values

hi=2, hi=3 h=2 hi=3 hi=3 hj=4,

h3 =5 hi=6, h3=5 h2=3, hi=2 hi=2

Compute the proportional solution using (10) in special case when o({i}) =a,i=1,...,5.

p1(20, T —to) = P12 + Bra+ Bis = (2+ 3+ 2)(T —to) = 71(T — to),
pa(xo, T —to) = Po1 + Poa + Paz = B3+ 5+ 5)(T — to) = 13(T — 1),
p3(zo, T —to) = B2 = 6(T — to),
pa(zo, T —to) = Ba1 + Baz + Bas = (4 + 3+ 2)(T — to) = I(T — to),
ps(xo, T —to) = Bs1 + Psa = (3+2)(T — to) = 5(T — tp).

) 4

Fig. 2. Five player network game.
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It is obvious that for prescribed trajectory Z(t) the system of inequalities

ps(E(t), T —t) <p3(x(t), T —t) <pr(z(t), T — 1) < pa(2(t),T — 1) <p2(2(t), T — 1)

is fulfilled for any time instant ¢ € [to, T]. This gives us the stability of the Power degree.

Conclusion

A novel form for measuring the worth of coalitions of agents in multi-agent dynamic system

is developed. In computing this type of characteristic function, the values for each coalition are
calculated as joint payoff of players from this coalition plus payoffs (multiplied on some discount

fact

or) of players which do not belong to the coalition S but have connections with players from S

along a given (prescribed) trajectory. Thus, the values of characteristic function for coalition S take
into account the influence of players which are not in coalition .S, but this does not make calculations
harder as in our previous papers [9;11;12|. The condition is derived for the supperadditivity of defined
characteristic function. The concept of Power degrees of an agent is introduced. The stability of the

PD

10.

11.

12.

13.

is defined and shown in special case.
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