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POWER DEGREES IN DYNAMIC MULTI-AGENT SYSTEMS1

Leon Petrosyan, David Yeung, and Yaroslavna Pankratova

Dynamic multi-agent systems connected in network are considered. To define the power of each agent the
analogue of characteristic function is introduced. The values of this characteristic function for each coalition
(subset of agents) are calculated as joint payoff of players from this coalition plus payoffs (multiplied on some
discount factor) of players which do not belong to the coalition S but have connections with players from S.
We suppose that the dynamic of the system is prescribed (this maybe cooperation, Nash equilibrium or any
other behaviour). Thus, the characteristic function is evaluated along the prescribed trajectory of agents. And it
measures the worth of coalitions under the motion along this trajectory instead of under minimax confrontation
or the Nash non-cooperative stance. As solution we consider the proportional solution and introduce Power
degrees of an agent based on proportional solution. It is shown that the Power degree (PD) belongs to the Core.
PD rank agents according to their importance.
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Л. А.Петросян, Д. В.К. Янг, Я. Б.Панкратова. Индекс значимости в динамических мно-

гоагентных системах.

Рассматриваются динамические мультиагентные системы на сети. Для определения силы игрока вво-
дится аналог характеристической функции. Значения этой характеристической функции для каждой
коалиции (подмножества агентов) рассчитываются как совместный выигрыш игроков (агентов) из этой
коалиции при движении вдоль предписанной заранее траектории плюс выигрыши, умноженные на неко-
торый коэффициент дисконтирования, игроков (агентов), которые не принадлежат коалиции S, но имеют
связи с игроками из S. Предполагается, что динамика системы предписана заранее (это может быть коопе-
ративной поведение, движение в равновесии по Нэшу, или какой либо другое движение). Характеристи-
ческая функция, вычисляемая вдоль предписанной траектории агентов, измеряет значимость коалиций
при движении вдоль этой траектории, а не в условиях минимаксного подхода или равновесия по Нэшу.
В качестве решения мы рассматриваем пропорциональное решение и вводим понятие индекса значимо-
сти агента, основанное на пропорциональном решении. Вектор, составленный из индексов значимости,
ранжирует агентов в соответствии с их важностью. Показано, что вектор, составленный из индексов
значимости агентов, принадлежит C-ядру. Исследуется вопрос устойчивости ранжирования агентов при
развитии мультиагентной системы вдоль предписанной траектории.

Ключевые слова: мультиагентная система, пропорциональное решение и индекс значимости.
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Recently, many interesting problems have been modelled using differential games on networks.
The first pioneering papers in this field are [1–5]. An obvious continuation of research in the field
of dynamic games is to extend them to the class of cooperative dynamic games on networks (the
following papers should be noted [6], and the paper of [7–9]). Different properties of the cooperative
solutions of dynamic network games are investigated in [10]. In the paper [11], the differential games
on networks with partner sets are considered. In this paper, we consider cooperative behaviour
only as one of possible behaviours of agents. We suppose that multi-agent system develops along
the prescribed trajectory (in some cases, this trajectory can coincide with cooperative or Pareto
optimal, or NE trajectory). The values of characteristic function for each subset of agents (coalition)
are calculated as joint payoff of agents from this coalition plus payoffs (multiplied on discount factor
depending from S) of agents which do not belong to the coalition S but have connections with
agents from S. This setting can be interpreted as a realisation of sanctions by agents from N\S

1Supported by the Russian Science Foundation (grant no. 22-11-00051), https://rscf.ru/en/project/22-
11-00051/.
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against agents from S. The characteristic function is evaluated along the prescribed trajectory. And
it measures the worth of coalitions under motion along this trajectory instead of under minimax
confrontation or the Nash non-cooperative stance. It can be seen that the new characteristic function
is superadditive under some conditions. In this paper, we introduce the Power degree of an agent
based on proportional solution.

1. Dynamic Multi-Agent System Connected in Network

Consider a class of n-person dynamic multi-agent systems on network with time horizon [t0, T ].
The agents are connected in a network. We use N = {1, 2, · · · , n} to denote the set of agents in
the network. The nodes of the network are used to represent the agents from the set N . We also
denote the set of nodes by N and denote the set of all arcs in network N by L. The arcs in L are
the arc (i, j) ∈ L for agents i, j ∈ N , i 6= j. For notational convenience, we denote the set of agents
connected to agent i as K̃(i) = {j : arc(i, j) ∈ L}, for i ∈ N .

Let xi(τ) ∈ R
m be the state variable of agent i ∈ N at time τ , and ui(τ) ∈ U i ⊂ R

k the control
variable of agent representing his communication efforts i ∈ N .

In previous models [12; 8], it was supposed that agent i ∈ N can cut connection with any other
agent from the set K̃(i) at any instant of time. In this paper, we exclude this possibility.

The state dynamics of the system is

ẋi(τ) = f i(xi(τ), ui(τ)), xi(t0) = xi0, (1)

for τ ∈ [t0, T ] and i ∈ N,ui(τ) ∈ U i ⊂ CompRl.
The function f i(xi, ui) is continuously differentiable in xi and ui.

The payoff function of agent i depends upon his state variable and the state variables of agents
from the sets K̃(i).

In particular, the payoff of agent i is given as

Hi(x
1
0, . . . , x

n
0 , u

1, . . . , un) =
∑

j∈K̃(i)

T
∫

t0

hji (x
i(τ), xj(τ))dτ. (2)

The term hji (x
i(τ), xj(τ)) is the instantaneous gain that agent i can obtain through

communication with agent j ∈ K̃(i) (note that the pair (i, i) /∈ L). The functions hji (x
i(τ), xj(τ)),

for j ∈ K̃(i) are non-negative and continuous. For notational convenience, we use x(t) to denote
the vector (x1(t), x2(t), · · · , xn(t)).

2. Characteristic Function

In this section, we introduce a new type of characteristic function which differs from one defined
in paper [6] and after used in [12; 8].

Suppose that agents for some reason decide to move along prescribed trajectory subject to
dynamics (1).

Denote this trajectory by x̄(t) = (x̄1(t), x̄2(t), · · · , x̄n(t)) and corresponding controls ū(t) =
(ū1(t), ū2(t), · · · , ūn(t)).

The joint payoff involving all agents will be expressed as

∑

i∈N

(

∑

j∈K̃(i)

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ

)

= V (N ;x0, T − t0) (3)

subject to dynamics (1).



130 L. Petrosyan et al.

For each S ⊂ N define the characteristic function which represent the worth the coalition S ⊂ N
as

V (S;x0, T−t0) =
∑

i∈S

[

∑

j∈K̃(i)∩S

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ + α(S)

∑

j∈K̃(i)∩N\S

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ

]

, (4)

α(S) ∈ (0, 1) is the discount factor, and the quantity (1−α(S)) can be interpreted as sanction level
used by coalition N\S against coalition S.

Note that the worth of coalition S is measured by the sum of payoffs of agents in the coalition
when the process develops along the prescribed trajectory x̄(t) = (x̄1(t), x̄2(t), · · · , x̄n(t)) plus the
sum of payoffs (multiplied on discount factor α(S)) of agents which do not belong to the coalition S
but have connections with agents from S. This shows that players from opposite coalition N\S
acting against coalition S decrease the income of coalition S.

For simplicity in notation, we denote

βij(x0, T − t0) =

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ, (5)

βij(x̄(t), T − t) =

T
∫

t

hji (x̄
i(τ), x̄j(τ))dτ, t ∈ [t0, T ]. (6)

Using notations (5), (6), we can express (4) as

V (S;x0, T − t0) =
∑

i∈S

[

∑

j∈K̃(i)∩S

βij(x0, T − t0) + α(S)
∑

j∈K̃(i)∩N\S

βij(x0, T − t0)

]

. (7)

Suppose that the following condition holds α(S1) ≤ α(S2), for S1 ⊂ S2, S1 ⊂ N , S2 ⊂ N . This
condition means that the sanction level (1−α(S)) is decreasing when the size of coalition S increases.
It can be understood from practical view point since sanction against large coalitions are usually
less effective than against small ones.

Proposition 1. Under above conditions, the characteristic function defined by (4) is superad-

ditive.

Proof. Prove the following inequalities:

V (S1;x0, T − t0) + V (S2;x0, T − t0) ≤ V (S1 ∪ S2;x0, T − t0) (8)

where S1 ∩ S2 = ∅.
Using (4), we have

V (S1;x0, T − t0) + V (S2;x0, T − t0)

=
∑

i∈S1

[

∑

j∈K̃(i)∩S1

βij(x0, T − t0) + α(S1)
∑

j∈K̃(i)∩N\S1

βij(x0, T − t0)

]

+
∑

i∈S2

[

∑

j∈K̃(i)∩S2

βij(x0, T − t0) + α(S2)
∑

j∈K̃(i)∩N\S2

βij(x0, T − t0)

]

.

In the square brackets of previous formula we have the payoff of player i, when i ∈ S1 or i ∈ S2.
Denote it by Ki(S). Consider the payoff of player i, i ∈ S1

Ki(S1) =
∑

j∈K̃(i)∩S1

βij(x0, T − t0) + α(S1)
∑

j∈K̃(i)∩N\S1

βij(x0, T − t0)
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and compare this payoff with payoff of player i if i ∈ S1 ∪ S2

Ki(S1 ∪ S2) =
∑

j∈K̃(i)∩(S1∪S2)

βij(x0, T − t0) + α(S1 ∪ S2)
∑

j∈K̃(i)∩N\(S1∪S2)

βij(x0, T − t0)

=
∑

j∈K̃(i)∩S1

βij(x0, T − t0) +
∑

j∈K̃(i)∩S2

βij(x0, T − t0) + α(S1 ∪ S2)
∑

j∈K̃(i)∩N\(S1∪S2)

βij(x0, T − t0).

Since S1 ∩ S2 = ∅ we can rewrite Ki(S1):

Ki(S1) =
∑

j∈K̃(i)∩S1

βij(x0, T − t0)

+ α(S1)
∑

j∈K̃(i)∩S2

βij(x0, T − t0) + α(S1)
∑

j∈K̃(i)∩N\(S1∪S2)

βij(x0, T − t0) ≤
∑

j∈K̃(i)∩S1

βij(x0, T − t0)

+ α(S1 ∪ S2)
∑

j∈K̃(i)∩S2

βij(x0, T − t0) + α(S1 ∪ S2)
∑

j∈K̃(i)∩N\(S1∪S2)

βij(x0, T − t0)

≤
∑

j∈K̃(i)∩S1

βij(x0, T − t0)

+
∑

j∈K̃(i)∩S2

βij(x0, T − t0) + α(S1 ∪ S2)
∑

j∈K̃(i)∩N\(S1∪S2)

βij(x0, T − t0) = Ki(S1 ∪ S2),

(9)

for any i ∈ S1, similarly (9) holds for i ∈ S2. And we get that each summand in the left side of (8)
is less or equal to the corresponding summand in the right side of (8).

Hence proposition is proved. �

3. Special Type of Imputations

In this section, we introduce the proportional solution using the defined characteristic function.
Now, we consider allocating the grand coalition cooperative network gain V (N ;x0, T − t0) along

prescribed trajectory to individual players according to the the proportional solution.
To define the proportional solution compute first the values V ({i}) for i = 1, . . . , n (the case

when S = {i}).

V ({i};x0, T − t0) = α({i}) ·
∑

j∈K̃(i)

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ, (10)

since K̃(i) ∩N = K̃(i). The proportional solution {pi(x0, T − t0)} can be written in the form

pi(x0, T − t0) =
V ({i};x0, T − t0)

∑

i∈N

V ({i};x0, T − t0)
· V (N ;x0, T − t0)

=

α({i})
∑

j∈K̃(i)

∫ T

t0

hji (x̄
i(τ), x̄j(τ))dτ

∑

i∈N

α({i})
∑

j∈K̃(i)

∫ T

t0

hji (x̄
i(τ), x̄j(τ))dτ

· V (N ;x0, T − t0).

(11)

If we consider the special case when α({i}) = α, i ∈ N, using (3) we get

pi(x0, T − t0) =
∑

j∈K̃(i)

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ.
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Proposition 2. Proportional solution is time-consistent and belongs to the Core of the

corresponding cooperative game (the case, when α({i}) = α, i = 1, . . . , n).

Proof.

pi(x0, T − t0) =
∑

j∈K̃(i)

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ

=
∑

j∈K̃(i)

t
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ +

∑

j∈K̃(i)

T
∫

t

hji (x̄
i(τ), x̄j(τ))dτ

=
∑

j∈K̃(i)

t
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ + pi(x̄(t), T − t).

(12)

This shows time-consistency of the proportional solution.

Also for any coalition S ⊂ N we have

∑

i∈S

pi(x0, T − t0) =
∑

i∈S

∑

j∈K̃(i)

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ

≥
∑

i∈S

∑

j∈K̃(i)∩S

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ = V (S;x0, T − t0).

(13)

Inequality (13) shows that vector (p1(x0, T − t0), . . . , pn(x0, T − t0)) belongs to the Core [8].

Hence Proposition 2 follows. �

4. Power Degree of an Agent Based on Proportional Solution

Network interactions in time were considered in [3;13]. Unlike the [6;7] here we will not assume
that agents seek to somehow optimize their influence, but we assume that the system develops in a
certain way and we will only investigate the issue of its stability from the point of view of preserving
the influence of agents in the process. To determine the degree of influence of agents, one can use
both the Shapley value or the proportional solution. In this paper, we shall use the proportional
solution.

As we defined before the multi-agent system develops along a prescribed trajectory x̄(t),
t ∈ [t0, T ]. In each time instant t ∈ [t0, T ] agents find themselves in a point x̄(t) on this trajectory.
Thus, the Power degree of an agent based on proportional solution at time t ∈ [t0, T ] will be equal
(the case α({i}) = α, i = 1, . . . , n)

pi(x̄(t), T − t) =
∑

j∈K̃(i)

T
∫

t

hji (x̄
i(τ), x̄j(τ))dτ.

Suppose that agents are numerated such way that

p1(x0, T − t0) ≥ p2(x0, T − t0) ≥ . . . ≥ pn(x0, T − t0). (14)

Consider now Power degree of agents at time instant t ∈ [t0, T ]

pi(x̄(t), T − t), i ∈ N,
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when the system develops along prescribed trajectory x̄(t) under control ū(t). We shall call the
trajectory (development) x̄(t) stable if

p1(x̄(t), T − t) ≥ p2(x̄(t), T − t) ≥ . . . ≥ pn(x̄(t), T − t), t ∈ [t0, T ]. (15)

The stable development (trajectory) is a rare event. It is sometimes important that (15) holds for
a some kind of optimal trajectories (cooperative trajectory, Pareto optimal trajectory, NE trajectory
and etc.)

It is clear that if the functions hji (x̄
i(τ), x̄j(τ)) = ¯̄hji = const (do not depend on time) the

condition (15) will always hold. Since in this case

pi(x̄(t), T − t) =
∑

j∈K̃(i)

¯̄hji (T − t) = (T − t)
∑

j∈K̃(i)

¯̄hji .

And the condition (15) will be equivalent to

∑

j∈K̃(1)

¯̄hj1 ≥
∑

j∈K̃(2)

¯̄hj2 ≥ . . . ≥
∑

j∈K̃(n)

¯̄hjn.

If ¯̄hji = 1, then pi(x̄(t), T − t) is proportional to the number of arcs which connect agent i
with other agents from network N . Then the introduced Power degree coincides to one considered
earlier [14], and it is of course stable.

One can see that stability condition (15) can be satisfied if we could change instantaneous
payments hji (x̄

i(τ), x̄j(τ)), τ ∈ [t0, T ], i ∈ N , j ∈ K̃(i) preserving the total payment

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ.

For this reason, we can use the classical mean value theorem

T
∫

t0

hji (x̄
i(τ), x̄j(τ))dτ =

T
∫

t0

hji (θij)dτ = hji (θij)(T − t0), θij ∈ [t0, T ].

Then the condition (14) can be written as

∑

j∈K̃(1)

hj1(θ1j) ≥
∑

j∈K̃(2)

hj2(θ2j) ≥ . . . ≥
∑

j∈K̃(n)

hjn(θnj).

It is clear that if we replace stage payments hji (x̄
i(τ), x̄j(τ)) by hji (θij) on time interval [t0, T ]

the stability condition (15) will hold on the whole time interval of multi-agent system development.

The same approach can be used if as Power degree we shall consider the Shapley value.

5. Examples

Example 1. Consider the following 3 player network game (see Fig. 1).

1 2 3

Fig. 1. Three player network game.
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Denote for convenience V (S;x0, T − t0) as V (S), S ⊂ N , βij(x0.T − t0) as βij , and βij(x̄(t), T − t) =
βij(t). For this network structure the values of characteristic function are defined as

V ({1}) = α({1})β12 , V ({2}) = α({2})(β21 + β23), V ({3}) = α({3})β32 ,

V ({1, 2}) = β12 + β21 + α({1, 2})β23 , V ({1, 3}) = α({1, 3})(β32 + β12),

V ({2, 3}) = β23 + β32 + α({2, 3})β21 , V ({1, 2, 3}) = β12 + β21 + β23 + β32.

Computing the proportional solution using (10) we have

p1(x0, T − t0) =
α({1})β12

α({1})β12 + α({2})(β21 + β23) + α({3})β32
(β12 + β21 + β23 + β32),

p2(x0, T − t0) =
α({2})(β21 + β23)

α({1})β12 + α({2})(β21 + β23) + α({3})β32
(β12 + β21 + β23 + β32),

p3(x0, T − t0) =
α({3})β32

α({1})β12 + α({2})(β21 + β23) + α({3})β32
(β12 + β21 + β23 + β32).

To make a conclusion about stability of prescribed trajectory we should compare the power
degrees of agents at each time instant t, t ∈ [t0, T ] according to proportional solution.

To understand the relation between components of proportional solution it is sufficient to
consider the relations between the numerator

α({1})β12 , α({2})(β21 + β23), α({3})β32.

In this example, we shall suppose that instantaneous payoffs hji (x̄
i(τ), x̄j(τ)) are constant (do

not depend on time), and are equal to

h21(t) = 2, h12(t) = 3, h32(t) = 4, h23(t) = 5, t ∈ [t0, T ],

then

p1(x̄(t), T − t) =
2α({1})

2α({1}) + 7α({2}) + 5α({3})
· 14(T − t),

p2(x̄(t), T − t) =
7α({2})

2α({1}) + 7α({2}) + 5α({3})
· 14(T − t),

p3(x̄(t), T − t) =
5α({3})

2α({1}) + 7α({2}) + 5α({3})
· 14(T − t).

In case α({1}) ≥
7

2
α({2}), α({1}) ≥

5

2
α({3}) and α({2}) ≥

5

7
α({3}) we will have the following

relation between Power degrees p1(x̄(t), T − t) ≥ p2(x̄(t), T − t) ≥ p3(x̄(t), T − t) for any t ∈ [t0, T ],
which means the stability of Power degree.

In special case, when α({i}) = α, i = 1, . . . , n), we get

p1(x̄(t), T − t) = 2(T − t), p2(x̄(t), T − t) = 7(T − t), p3(x̄(t), T − t) = 5(T − t).

Calculate the Power degrees using the Shapley value [15]

Sh1(x0, T − t0) =
β12 + β21

2
+

β12
6

(2α({1}) + α({1, 3})) −
β21
6

(2α({2, 3}) + α({2}))

+
β23
6

(α({1, 2}) − α({2})) +
β32
6

(α({1, 3}) − α({3})),
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Sh2(x0, T − t0) =
β21 + β12

2
+

β23 + β32
2

+
β21
6

(2α({2}) + α({2, 3}))

−
β12
6

(2α({1, 3}) + α({1})) −
β32
6

(2α({1, 3}) + α({3})) +
β23
6

(α({1, 2}) + 2α({2})),

Sh3(x0, T − t0) =
β23 + β32

2
+

β32
6

(2α({3}) + α({1, 3})) −
β23
6

(2α({1, 2}) + α({2}))

+
β12
6

(α({1, 3}) − α({1})) +
β21
6

(α({2, 3}) − α({2})).

Using the values of instantaneous gains introduced above for prescribed trajectory x̄(t), t ∈ [t0, T ],
and suppose that α(S) = α, S ⊂ N find the Shapley value in time instant t ∈ [t0, T ]

Sh1(x̄(t), T − t) =
5− α

2
(T − t), Sh2(x̄(t), T − t) = 7(T − t), Sh3(x̄(t), T − t) =

9 + α

2
(T − t).

It is interesting that for the second player Power degree which corresponds to the proportional
solution coincides with Power degree which corresponds to the Shapley value for any α.

Example 2. Consider the following 5 player network game (see Fig. 2).

In this case, we shall consider only proportional solution, and as result the following values of
characteristic function

V ({1}) = α({1})(β12 + β14 + β15), V ({2}) = α({2})(β21 + β24 + β23),

V ({3}) = α({3})β32 , V ({4}) = α({4})(β41 + β42 + β45), V ({5}) = α({5})(β51 + β54),

V ({1, 2, 3, 4, 5}) = β12 + β21 + β14 + β41 + β15 + β51 + β23 + β32 + β24 + β42 + β45 + β54.

Suppose that the instantaneous gains hji (x̄i(t), x̄j(t)) are constant on prescribed trajectory x̄(t), i.e.

hji (x̄i(t), x̄j(t)) = hji and take the following values

h21 = 2, h12 = 3, h51 = 2, h15 = 3, h41 = 3, h14 = 4,

h32 = 5, h23 = 6, h42 = 5, h24 = 3, h54 = 2, h45 = 2.

Compute the proportional solution using (10) in special case when α({i}) = α, i = 1, . . . , 5.

p1(x0, T − t0) = β12 + β14 + β15 = (2 + 3 + 2)(T − t0) = 7(T − t0),

p2(x0, T − t0) = β21 + β24 + β23 = (3 + 5 + 5)(T − t0) = 13(T − t0),

p3(x0, T − t0) = β32 = 6(T − t0),

p4(x0, T − t0) = β41 + β42 + β45 = (4 + 3 + 2)(T − t0) = 9(T − t0),

p5(x0, T − t0) = β51 + β54 = (3 + 2)(T − t0) = 5(T − t0).

5

1 2 3

4

Fig. 2. Five player network game.
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It is obvious that for prescribed trajectory x̄(t) the system of inequalities

p5(x̄(t), T − t) < p3(x̄(t), T − t) < p1(x̄(t), T − t) < p4(x̄(t), T − t) < p2(x̄(t), T − t)

is fulfilled for any time instant t ∈ [t0, T ]. This gives us the stability of the Power degree.

Conclusion

A novel form for measuring the worth of coalitions of agents in multi-agent dynamic system
is developed. In computing this type of characteristic function, the values for each coalition are
calculated as joint payoff of players from this coalition plus payoffs (multiplied on some discount
factor) of players which do not belong to the coalition S but have connections with players from S
along a given (prescribed) trajectory. Thus, the values of characteristic function for coalition S take
into account the influence of players which are not in coalition S, but this does not make calculations
harder as in our previous papers [9;11;12]. The condition is derived for the supperadditivity of defined
characteristic function. The concept of Power degrees of an agent is introduced. The stability of the
PD is defined and shown in special case.
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