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In this paper, we have solved several extremal problems of the best mean-square approximation of function f ,

on the semiaxis with a power-law weight, which can be used to solve various problems. Sharp Jackson–Stechkin

type inequalities are obtained on some classes of functions in which the values of the best approximations are

estimated from above through moduli of smoothness of the k-th order.
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1. Introduction

The problem of finding exact constants in Jackson–Stechkin inequalities

En−1(f) ≤ Ξ∗ωk(f,
γ

n
), f ∈ L2,

is one of the most important problems in the theory of approximations in L2.

Formulation of the problem. It is required to determine the value of the following quantity

Ξ∗ = Ξ∗(n, k, γ) = sup
{En−1(f)

ωk(f,
γ
n)

: f ∈ L2
}

for fixed natural numbers n, k and the real number γ > 0. Here En−1(f) is the best approximation

of the function f ∈ L2 by trigonometric polynomials of order ≤ n− 1, ωk(f,
γ

n
) is the modulus of

smoothness of the k-th order of the function f ∈ L2. The first exact constants in Jackson inequalities
(with the first modulus of continuity) were obtained by N.P. Korneichuk [14] in space C[0, 2π],
N. I. Chernykh in L2[0, 2π]. In 1967 N.I. Chernykh proved the following theorem:

Theorem A [6, Theorem]. Let f ∈ L2[0, 2π], f is not equivalent to zero. Then for any n =
0, 1, 2, . . . the inequality holds

En(f)<
1√
2
ω1(

π

n+ 1
, f).
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Also, as a consequence of the theorem 1 from [7], he obtained the following result:

Theorem B [7, Corollary 1]. Let r and n be natural numbers. Then for any function f for

which f (r) ∈ L2[0, 2π] the inequality holds

En(f) ≤
1√
2nr

(

n

2

π/n
∫

0

ω2
1(f

(r), t) sin nt dt

)1/2

.

In both theorems A and B, the inequalities are exact (unimproveable).

In 1979 was obtained by L.V. Taikov in [28] an exact result. In 1991 generalization of the result
of N. I. Chernykh was obtained by V.V. Shalaev [25]. The generalization and development of the
topic was reflected in the studies of I. I. Ibragimov and F.G. Nasibov [12] and A.Yu. Popov [21].
They extended the above result for the square summable function on the entire axis. The exact
Jackson inequalities on the sphere were obtained by V.V. Arestov and V.Yu. Popov in [2]. In 1998
A.G. Babenko [3] extended the result of N. I. Chernykh for the function summable with a square
on the semiaxis R+ with weight t2α+1, namely

Theorem C [3, Theorem 1]. Let σ > 0, α ≥ −1

2
. Then for any function f ∈ L2(R+, t

2α+1),

f is not equivalent to zero, the inequalities holds

Eσ(f) < ωk

(

f,
τ

σ

)

for k ≥ 1, τ ≥ 2qα,1;

Eσ(f) < 2
(1−k)

2 ωk

(

f,
τ

σ

)

for 0 < k < 1, τ > 2qα,1;

where qα,1 is the first positive zero of the Bessel function Jα of order α.

In Theorem C, the first inequality is exact. The issue of accuracy of the second inequality
remains open. Note that for k = 1 the assertions of Theorem C were independently obtained by
A.V. Moskovsky [17].

Further development and dissemination of the topic was reflected in the studies of E.
Berdisheva [4], A.V. Moskovsky [17; 18] and D.V. Gorbachev [9] in the multidimensional case.
These results were preceded by a fundamental result of V. A.Yudin [35] on the exact Jackson
inequality in the space L2 on a multidimensional torus.

The extension of this question to the case of the best mean-square approximation by entire
functions of exponential σ > 0 type in L2[(0,∞), xγ ] with weight was carried out by V. I. Ivanov [13],
A.G. Vakarchuk [31], A.G. Babenko [3], M. Sh. Shabozov [24], K. Tukhliev [22], V.V. Arestov,
A.G. Babenko, M.V. Deikalova, and A. Horv’ath [1] and see the literature cited there. In the case of
approximation of 2π-periodic function from L2[0, 2π] by the subspace of trigonometric polynomials
of order ≤ n − 1 in the metric L2[0, 2π], similar problems were solved by M.G. Esmaganbetov [8]
and also in [6; 7; 25; 26; 36], the literature cited there.

This article is devoted to obtaining exact constants

Km,n,r(t) = sup
{nrEn−1(f)

ωm(Brf, t)
: f ∈ W r

2,µα
(B)

}

in Jackson–Stechkin type inequalities

En−1(f) ≤ Kn−rωm(Brf, t), f ∈ W r
2,µα

(B).

Definitions Brf and W r
2,µα

(B) are given in Section 2.
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2. Basic notation and auxiliary results

2.1. Basic notation

Let α > −1

2
. By L2,µα we denote the space consisting of measurable functions f in [0,∞) with

the norm

‖f‖ = ‖f‖2,µα =

(

∞
∫

0

|f(x)|2dµα(x)

)1/2

,

where dµα(x) =
x2α+1

2αΓ(α+ 1)
dx.

The Hankel transform is the following integral transformation [5; 11]:

H : f(t) 7→ Ĥα(f)(λ) =

∞
∫

0

f(t)jα(λt)dµα(t), λ ∈ R.

The inverse Hankel transform is given by the formula

H−1 : f(λ) 7→ f̃(t) = H̃α(f)(t) =

∞
∫

0

Ĥα(f)(λ)jα(λt)dµα(λ).

Let T > 0 and denote by ST (f, x) the partial Hankel integral of a function f ∈ L2,µα , i.e.,

ST (f, x) =

T
∫

0

Ĥα(f)(λ)jα(λx)dµα(λ), x ∈ (0,∞).

For functions f, g ∈ L2,µα , the generalized Plancherel’s theorem [29;30]
〈

f, g
〉

=
〈

Ĥαf, Ĥαg
〉

where

〈f, g〉 =
∫ ∞

0
f(x)g(x)dµα is the inner product of f and g.

We denote by M(σ, 2, α), σ > 0, the set of all functions Qσ(x) satisfying the following conditions
(see [20]):

1. Qσ(x) — even, entire function of exponential type σ;

2. Qσ(x) belong to class L2,µα .

The best approximation of a function f ∈ L2,µα by the class M(σ, p, α), p = 2, σ > 0 is defined
as follows:

Eσ(f) = Eσ(f)2,µα = inf{‖f −Qσ‖ : Qσ ∈ M(σ, 2, α)} =

(

∞
∫

σ

|Ĥα(f)(λ)|2dµα(λ)

)1/2

. (2.1)

We denote by jα(λt) the normalized Bessel function [30; 34] jα(λt) =
2αΓ(α+ 1)Jα(λt)

(λt)α
. We recall

that for all λ ∈ C, the function jα(λt) is unique solution of the problem [15]

{

Bu(t) = −λ2u(t),

u(0) = 1, u′(0) = 0,

where B is a differential Bessel operator on [0,∞) defined by Bu(t) =
d2u

dt2
+

2α+ 1

t

du

dt
.
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We introduce a class of functions. Let S be the space of test functions on R, i.e., the set of all
infinitely differentiable functions ϕ(t) decreasing as |t| 7→ ∞ together with all derivatives faster than
any power |t|−1. In the usual way, the space S is endowed with a topology and becomes a locally
convex space (see [30] or [20]). Let S

′

be the set of linear continuous functionals on S, i.e., the space
of generalized functions of slow growth. In the usual way, S

′

is endowed with the structure of a
topological vector space. Denote by S+ be the subspace in S consisting of even functions. The space
S+ is endowed with the induced from the space S topology.

Let S
′

+ be the space of even distributions of slow growth, i.e., the set of continuous linear

functionals on S+. For f ∈ S
′

+ and ϕ ∈ S+, we denote by (f, ϕ) the value of the functional f on
the function ϕ.

The spaces Lp,µα , 1 ≤ p ≤ ∞, are embedded in the space S
′

+ if for f(t) ∈ Lp,µα and ϕ(t) ∈ S+

we set

(f, ϕ) =

∞
∫

0

f(t)ϕ(t)t2α+1dt.

Since the Bessel differential operator satisfies the condition

(Bϕ, φ) = (ϕ,Bφ), φ, ϕ ∈ S+,

then the action of the operator B naturally extends to generalized functions by the formula

(Bf,ϕ) = (f,Bϕ), f ∈ S
′

+, ϕ ∈ S+.

It is known that subspace S+ is dense in space Lp,µα (see [20;30]). Since S+ is a dense linear subset
in a Banach space Lp,µαfor p < ∞, it follows from inequality

‖Thf‖p,µα ≤ ‖f‖p,µα

that the operator Th on S+ extends by continuity to a bounded operator Th in Lp,µα, where Th is
the generalized shift operator with step h ∈ [0,∞) in Lp,µα (see [15;3;20] and formula (2.2) below).

If g(t) is any even infinitely differentiable function, any derivative of which grows as t → ∞
no faster than some power of t (we will call such functions infinitely differentiable functions of
polynomial growth), then the product of the function g(t) and the generalized function f ∈ S

′

+. By
definition, (gf, ϕ) := (f, gϕ), ϕ ∈ S+.

For any function f(x) ∈ S+ and for any positive numbers r > 0, σ > 0 we put Dr
σf =

Ĥα(ϕσ(t)f̃(t)), where

ϕσ(t) =
∞
∑

k=0

cσkjα
(π

σ
kt
)

is continuous, even, bounded on R, and coincides with the function x2r for |x| ≤ σ.
Since f̃(t) ∈ S+ and ϕσ(t) ∈ S

′

+, then ϕσ(t)f̃(t) ∈ S
′

+ and, therefore, Dr
σf ∈ S

′

+.

Theorem D [20, Theorem 3.3 (Platonov)]. If f ∈ S+, r > 0, σ > 0, then the function Dr
σf

belongs to the space Lp,µα for any 1 ≤ p ≤ ∞ and the inequality holds

‖Dr
σf‖p,µα ≤ Cσ2r‖f‖p,µα

where C = C(α, r) > 0 is the some constant.

We assume by definition
(−B)rf = Dr

σf.

In Lemma 3.5 by Platonov [20] proves the correctness of the definition of the operator (−B)r. In
addition, in [20, Theorem 1.1] an analogue of the direct approximation theorem in the space Lp,µα,
1 ≤ p ≤ ∞, α > −1/2, is established.
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Let W r
2,µα

(B), r = 1, 2, . . . is a Sobolev space(see [20]), constructed by the differential operator
B, i.e.

W r
2,µα

(B) =
{

f ∈ L2,µα : Bjf ∈ L2,µα , j = 1, 2, . . . , r
}

.

Consider in the space Lp,µαthe generalized shift operator of functions f(x) (see [15;3;20]

(Thf)(x) =
Γ(α+ 1)√
πΓ(α+ 1/2)

π
∫

0

f(
√

x2 + h2 − 2xh cosϕ)(sinϕ)2αdϕ. (2.2)

In [3] the generalized difference operator and the moduli of smoothness of the m-th order was
determined as follows:

δmt f = (I − Tt)
m/2f =

∞
∑

k=0

(−1)k

(m

2
k

)

T k
t f

and

ωm(f, t) = sup
0≤h≤t

‖δmh f‖2,µα = sup
0<h≤t

{

∞
∫

0

(1− jα(λh))
m|f̂α(λ)|2dµα(λ)

}1/2

, (2.3)

where I is the identity operator and T 0
t = I.

In [3], when solving problems of the theory approximations in the space L2(R
d) associated with

finding the exact constants in the Jackson–Stechkin inequality

Eσ(f)L2(Rd) ≤ ωm

(

f,
τ

σ

)

L2(Rd)

considered the following extreme characteristic:

Kσ,m,d = sup

{

Eσ(f)L2(Rd)

ωm

(

f,
τ

σ

)

L2(Rd)

: f ∈ L2(R
d)

}

and found the exact constant. More detailed information and corresponding notations are given
below in Section 4. Note that the notation Aσf (see (4.2)) is used there instead of Eσ(f)L2(Rd).

In this paper, we will consider solving approximation problems in L2,µα associated with finding
exact constants in Jackson’s inequality

Eσ(f) ≤ Kσ−2rωr

(

Brf,
τ

σ

)

for functions f ∈ W r
2,µα

(B). The finiteness of the exact constant follows from the above-mentioned
result of Platonov [20, Theorem 1.1]. Also, in this paper, we consider an extreme approximate
characteristic of the following form

Ξσ,r,m,p(h) = sup
f∈W r

2,µα
(B)

σ2rEσ(f)
(

∫ h

0
ωp
m(Brf, t)ϕ(t)dt

)1/p
, (2.4)

where r ∈ Z+, m ∈ N, 0 < p < 2, σ > 0, h ∈
[

0,
qα+1,1

σ

]

, qα+1,1 is the smallest positive zero of

the function jα+1(t), 0 ≤ t < ∞, and ϕ(t) is a non-negative, measurable, summable on the interval
[0, h] and not equivalent to zero function.
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2.2. Auxiliary results

Let qα,l be the positive l-th root of the Bessel functions Jα(x), i.e.

Jα(qα,l) = 0, l ∈ N, 0 < qα,1 < qα,2 < · · · < qα,l < · · · .

Obviously, jα(x) has the same positive roots as Jα(x) ([34, Ch. 15, p. 526]), jα(x) is continuous

on the semiaxis [0,∞). In the rest of the article, we denote the segment [qα,k, qα,k+1] by I
(α)
k with

k ∈ N, and the segment [0, qα,1] through I
(α)
0 .

Since jα(x) = 1+O(x2) for x −→ 0 all positive roots of the function jα(x) are different, we can
get that

jα(x) ≥ 0, x ∈ I
(α)
2k , at k ∈ N ∪ {0}, (2.5)

jα(x) ≤ 0, x ∈ I
(α)
2k−1, at k ∈ N.

It follows from ([34, Ch. 15, p. 528]) that the positive roots of Jα(x) alternate with the roots of
Jα+1(x), i.e.

0 < qα,1 < qα+1,1 < qα,2 < qα+1,2 < · · · < qα,l < qα+1,l < · · · . (2.6)

To prove the theorems given in Section 3, we need the following lemmas.

Lemma 1. Let qα+1,1 is the smallest positive zero of the function jα+1(t). Let σ > 0 and

t ∈
(

0,
qα+1,1

σ

]

. Then

sup
0≤h≤t

(1− jα(σh)) = (1− jα(σt)).

Proof of Lemma 1. Since

j′α(t) = 2αΓ(α+ 1)
d

dt

(Jα(t)

tα

)

= − t

2(α+ 1)
jα+1(t), t ∈ I

(α+1)
0

(см. [34]), then taking into account that jα+1(0) > 0 and jα+1(qα+1,1) = 0 from the inequalities

(2.5) and (2.6), we have jα+1(t) ≥ 0 for all t ∈ I
(α+1)
0 . Whence it follows that

(1− jα(t))
′ =

t

2(α + 1)
jα+1(t) > 0 on I

(α+1)
0 .

Then the function 1 − jα(t) is increasing on I
(α+1)
0 . Therefore, for all t ∈ (0, qα+1,1] we have

sup
0<h≤t

(1− jα(h)) = 1− jα(t). Therefore, for all t ∈
(

0,
qα+1,1

σ

]

we have

sup
0<h≤t

(1− jα(σh)) = 1− jα(σt).

Lemma is proved.

Lemma 2. Let k ∈ N, r ∈ Z+, qα+1,1 is the smallest positive zero of the function jα+1(t),

h ∈
[

0,
qα+1,1

σ

]

and σ > 0. Let

Ψ(y) = y4r
h
∫

0

(1− jα(yt))
2kdt, y ∈ G, where G = {y : σ ≤ y < ∞} .

Then

min {Ψ(y) : y ∈ G} = σ4r

h
∫

0

(1− jα(σt))
2kdt.
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Proof of Lemma 2. Since j′α(t) = − t

2(α+ 1)
jα+1(t), 0 ≤ t ≤ ∞, then

Ψ′(y) = 4ry4r−1

h
∫

0

(1− jα(yt))
2kdt+ y4r

h
∫

0

∂

∂y

(

(1− jα(yt))
2k
)

dt. (2.7)

Since it is not difficult to verify, by direct verification, the equality is true

∂

∂y

(

(1− jα(yt))
2k
)

=
t

y

∂

∂t

(

(1− jα(yt))
2k
)

, (2.8)

where t, y are nonzero, then from (2.7), by virtue of (2.8), we have

Ψ′(y) = y4r−1

[

4r

h
∫

0

(1− jα(yt))
2kdt+

h
∫

0

t
∂

∂t

(

(1− jα(yt))
2k
)

dt

]

. (2.9)

Applying the method of integration by parts when calculating the second integral on the right
side (2.9), we arrive at the following conclusion

Ψ′(y) = y4r−1

[

(4r − 1)

h
∫

0

(1− jα(yt))
2kdt+ h (1− jα(yh))

2k

]

. (2.10)

Since |jα(u)| ≤ 1 ∀u ≥ 0 (see [3, formula (21)]), by virtue of (2.10) we have Ψ′(y) > 0 for all y ≥ σ.

Lemma is proved.

Remark 1. Earlier, Lemma 2 was proved by Taikov in [28] for α = −1/2, Ψ(y) = y2r
∫ h

0
(1−

cos yt)mdt, (and also see [8] in the more general case of Ψ), and in [33, p. 106; 26, p. 320] for α = 1/2.

3. Main results

Let α > −1/2, σ > 0, qα,1 is the smallest positive root of the equation jα(t) = 0. To formulate
one of the main results of this subsection, we need the following weight function, which is a σ-dilation
of the weight function introduced in [3, p. 196, (61)]:

v(t) = vα(t) = t2α+1T qα,1
σ

V (t), t ∈ R+, (3.1)

where

V (t) =







jα(σt), 0 < t <
qα,1
σ

;

0, t ≥ qα,1
σ

.

Theorem 1. Let k ∈ N, r ∈ Z+, α > −1/2, σ > 0. For any function f ∈ W r
2,µα

(B) the estimate

holds:

Eσ(f) ≤

(
∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

σ2r

(
∫

2qα,1
σ

0
v(t) dt

)k/2
,

where qα,1 is the smallest positive root of the equation jα(t) = 0 and v(t) is the weight function (3.1).



266 T.E.Tileubayev

Proof of Theorem 1. For any function f ∈ W r
2,µα

(B) taking into account

Eσ(f)2,µα =

(

∞
∫

σ

|Ĥα(f)(λ)|2dµα(λ)

)1/2

and applying Hölder’s inequality with parameter
1

p
=

2k − 2

2k
,
1

q
=

1

k
and from elementary

transformations, we have

E2
σ(f)−

∞
∫

σ

|Ĥα(f)(λ)|2jα(λt)dµα(λ) =

∞
∫

σ

|Ĥα(f)(λ)|2(1− jα(λt))dµα(λ)

=

∞
∫

σ

|Ĥα(f)(λ)|2−
2
k |Ĥα(f)(λ)|

2
k (1− jα(λt))dµα(λ)

≤ E
2− 2

k
σ (f)

(

∞
∫

σ

|Ĥα(f)(λ)|2(1− jα(λt))
kdµα(λ)

)1/k

≤ E
2− 2

k
σ (f)

(

σ−4r

∞
∫

σ

λ4r|Ĥα(f)(λ)|2(1− jα(λt))
kdµα(λ)

)1/k

≤ E
2− 2

k
σ (f)

(

σ−4r

∞
∫

0

λ4r|Ĥα(f)(λ)|2(1− jα(λt))
kdµα(λ)

)1/k

. (3.2)

Since

ω2
k(B

rf, t) = sup
0<h≤t

∞
∫

0

λ4r|Ĥα(f)(λ)|2(1− jα(λh))
kdµα(λ)

then from inequalities (3.2) get

E2
σ(f)−

∞
∫

σ

|Ĥα(f)(λ)|2jα(λt)dµα(λ) ≤ E
2− 2

k
σ (f)σ− 4r

k ω
2
k

k (B
rf, t). (3.3)

Further multiplying both parts of the inequality (3.3) by the weight function v defined by
formula (3.1) and integrating by t from zero to

2qα,1

σ we obtain

2qα,1
σ
∫

0

E2
σ(f)v(t)dt −

2qα,1
σ
∫

0

∞
∫

σ

|Ĥα(f)(λ)|2jα(λt)dµα(λ)v(t)dt

≤ σ− 4r
k

2qα,1
σ
∫

0

E
2− 2

k
σ (f)ω

2
k

k (B
rf, t)v(t)dt. (3.4)

Since the value of the integral (see [3])

2qα,1
σ
∫

0

jα(λt)v(t)dt =
(qα,1

σ

)2α+1
· σ

λ2 − σ2
j′α(qα,1)j

2
α(

2λqα,1
σ

) ≤ 0 (3.5)
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for all λ > σ then from inequality (3.4) and in view of inequality (3.5) and taking into account the
properties of the weight function v and from Lemma A [3] we obtain

E2
σ(f)

2qα,1
σ
∫

0

v(t) dt ≤ σ− 4r
k E

2− 2
k

σ (f)

2qα,1
σ
∫

0

ω
2
k

k (B
rf, t)v(t) dt.

Hence it follows that

E
2
k
σ (f) ≤ σ− 4r

k

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

∫

2qα,1
σ

0
v(t) dt

,

Eσ(f) ≤

(

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

σ2r
(

∫

2qα,1
σ

0
v(t) dt

)k/2

. (3.6)

Theorem is proved.

Corollary 1. Let k = 1, 2, . . . , r = 1, 2, . . . , α > −1/2 and σ > 0. For any function f ∈
W r

2,µα
(B) holds inequality

Eσ(f) ≤ σ−2rωk

(

Brf,
2qα,1
σ

)

,

where qα,1 is a smallest positive root of the equation jα(t) = 0 and v(t) is the weight function defined

by formula (3.1).

Proof of Corollary 1. Let f ∈ W r
2,µα

(B). Then from inequality (3.6) in virtue by the
monotonicity of the modulus of smoothness ωk(B

rf, t) it follows

Eσ(f) ≤ σ−2r

(

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

(

∫

2qα,1
σ

0
v(t) dt

)k/2

≤ σ−2rωk

(

Brf,
2qα,1
σ

)

.

Corollary is proved.

Remark 2. Earlier in [3; 10; 13; 17] were obtained exact constants in the Jackson–Stechkin
inequality. In case r = 0, α = 0, k ∈ N from the Corollary 1 of Theorem 1 we obtain the result of J.
Li, Y.P. Liu [16] with an exact constant in space L2([0, 1], x).

Theorem 2. Let α > −1/2, qα+1,1 is the smallest positive zero of the function jα+1(x). Let

k ∈ N, r ∈ Z+, 0 < p ≤ 2, σ > 0, h ∈
(

0,
qα+1,1

σ

]

. Then the following estimates holds:

sup
f∈W r

2,µα
(B)

σ2rEσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαdt

)1/p
=

1
(

∫ h

0
(1− jα(σt))

kp
2 dt
)1/p

.

Proof of Theorem 2. Upper estimate. Let 0 < p ≤ 2. First of all, we note that (2.3) for an
arbitrary function f ∈ W r

2,µα
(B) imply the inequality

ω2
k(B

rf, t)2,µα ≥
∞
∫

σ

λ4r (1− jα(λt))
k |Ĥα(f)(λ)|2dµα(λ). (3.7)
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Raising both sides of the inequality (3.7) by the power p/2, integrating the variable t over the range
t = 0 to t = h, we obtain

(

h
∫

0

(

ω2
k(B

rf, t)2,µα

)p/2
dt

)1/p

≥
[

h
∫

0

(

∞
∫

σ

λ4r(1− jα(λt))
k|Ĥα(f)(λ)|2dµα(λ)

)p/2

dt

]1/p

= I. (3.8)

Further, applying the Minkowski inequality to the right side of inequality (3.8), we obtain

for
p

2
≤ 1

I ≥
[

∞
∫

σ

|Ĥα(f)(λ)|2
(

h
∫

0

λ2rp(1− jα(λt))
kp

2 dt

)2/p

dµα(λ)

]1/2

. (3.9)

From (3.9) by virtue of the lemma 2 we have

I ≥
(

∞
∫

σ

|Ĥα(f)(λ)|2dµα(λ)

)1/2

inf
λ≥σ

{

λ2rp

h
∫

0

(1− jα(λt))
kp

2 dt

}1/p

=

= σ2rEσ(f)2,µα

(

h
∫

0

(1− jα(σt))
kp

2 dt

)1/p

. (3.10)

Thus, from inequalities (3.7) and (3.10) we obtain

(

h
∫

0

ωp
k(B

rf, t)2,µαdt

)1/p

≥ σ2rEσ(f)2,µα

(

h
∫

0

(1− jα(σt))
kp

2 dt

)1/p

.

Hence it follows that for all f ∈ W r
2,µα

(B) the inequality

σ2rEσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαdt
)1/p

≤ 1
(

∫ h

0
(1− jα(σt))

kp

2 dt
)1/p

.

Now in this inequality we can pass to a supremum over all f ∈ W r
2,µα

(B), then

sup
f∈W r

2,µα
(B)

σ2rEσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαdt
)1/p

≤ 1
(

∫ h

0
(1− jα(σt))

kp
2 dt
)1/p

. (3.11)

Thus, the upper estimates are proved.

Let us prove the lower estimates. To obtain a lower estimate, we construct the function fǫ ∈
W r

2,µα
(B) so that:

sup
f∈W r

2,µα
(B)

σ2rEσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαdt
)1/p

≥ σ2rEσ(fǫ)2,µα

(

∫ h

0
ωp
k(B

rfǫ, t)2,µαdt
)1/p

.

To do this, we use function fǫ(x) ∈ W r
2,µα

(B) constructed by Babenko in [3] and such that

Ĥα(fǫ)(λ) =

{

|λ|−α− 1
2 if σ < |λ| < σ + ǫ,

0, otherwise.
(3.12)
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Relations (2.1) and (3.12) imply the equalities

E2
σ(fǫ)2,µα =

∞
∫

σ

|Ĥα(fǫ)(λ)|2dµα(λ) =

σ+ǫ
∫

σ

|Ĥα(fǫ)(λ)|2dµα(λ) = ǫ.

Therefore
Eσ(fǫ)2,µα =

√
ǫ. (3.13)

Using the properties of the Hankel transform [20;30], we write

Ĥα(B
rfǫ)(λ) = λ2rĤα(fǫ)(λ)

and by virtue of the equality (2.1) and taking into account that (3.12) we have

ω2
k(B

rfǫ, t)2,µα =

σ+ǫ
∫

σ

λ4r|Ĥα(fǫ)(λ)|2(1− jα(λt))
kdµα(λ)

≤ (σ + ǫ)4r(1− jα((σ + ǫ)t))kǫ. (3.14)

Raising the left and right parts of the inequality (3.14) to the power of
p

2
and integrating both parts

of the resulting relation, we have

(

h
∫

0

ωp
k(B

rfǫ, t)2,µαdt

)1/p

≤ (σ + ǫ)2r
√
ǫ

(

h
∫

0

(1− jα((σ + ǫ)t)
kp

2 dt

)1/p

.

Using (3.13), (3.14) we write

σ2rEσ(fǫ)2,µα

(

∫ h

0
ωp
k(B

rfǫ, t)2,µαdt
)1/p

≥ σ2r

(σ + ǫ)2r
(

∫ h

0
(1− jα((σ + ǫ)t))

kp

2 dt
)1/p

. (3.15)

Since fǫ ∈ W r
2,µα

(B), then from (3.15) and (1.4) we obtain

sup
f∈W r

2,µα
(B)

σ2rEσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαdt
)1/p

≥ σ2r

(σ + ǫ)2r
(

∫ h

0
(1− jα((σ + ǫ)t))

kp

2 dt
)1/p

. (3.16)

Obviously, the left side of inequality (3.16) does not depend on ǫ, and the expression located on its
right side is the function of ǫ (with fixed values of other parameters). Calculating the upper bound
for ǫ from the right side of inequality (3.16), we write

sup
f∈W r

2,µα
(B)

σ2rEσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαdt
)1/p

≥ 1
(

∫ h

0
(1− jα(σt))

kp

2 dt
)1/p

. (3.17)

Comparing the upper estimate (3.11) and the lower estimate (3.17), we obtain the proof of the
theorem.

Remark 3. Previously, similar results were obtained in [22]: for α = 0 and

in [32] : for α = −1

2
,

1

2r
< p ≤ 2, j− 1

2
(σt) = cosσt,

in [31] : for α =
1

2
, 0 < p ≤ 2, j 1

2
(t) =

sin t

t
, and

in [26] : for α =
1

2
,

1

r
< p ≤ 2, j 1

2
(t) =

sin t

t
,

in [28] : for α = −1

2
, p = 2 (see 219 p.).
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The following theorem is an extension of Ligun’s result to the case of the generalized modulus
of smoothness ωk(B

rf, t)2,µα .

Theorem 3. Let qα+1,1 be the smallest positive zero of the function jα+1(t), α > −1

2
, k ∈ N,

r ∈ Z+, 0 < p ≤ 2, σ > 0, h ∈
(

0,
qα+1,1

σ

)

and ϕ(t) is a function that is measurable, non-negative,

integrable on [0, h], and not identically zero. Then the inequalities

1

γσ,k,r,p(ϕ, h)
≤ Ξσ,k,r,p(ϕ, h) ≤

1

inf {γλ,k,r,p(ϕ, h) : σ ≤ λ < ∞}

holds where

γλ,k,r,p(ϕ, h) =

(

λ2rp

h
∫

0

(1− jα(λt))
kp

2 ϕ(t)dt

)1/p

.

Proof of Theorem 3. Let 0 < p ≤ 2, then arguing in the same way as in the previous theorem 2
we get

ω2
k(B

rf, t)2,µα ≥
∞
∫

σ

λ4r(1− jα(λh))
k|Ĥα(f)(λ)|2dµα(λ).

Raising both sides of this inequality by the power p/2 and multiplying them by ϕ(t), integrating
over t from zero to h, we have

(

h
∫

0

(

ω2
k(B

rf, t)2,µα

)p/2

ϕ(t)dt

)1/p

≥
[

h
∫

0

(

∞
∫

σ

λ4r(1− jα(λt))
k|Ĥα(f)(λ)|2dµα(λ)

)p/2

ϕ(t)dt

]1/p

= I. (3.18)

Applying the Minkowski inequality to the right side of inequality (3.18), we obtain for
p

2
≤ 1

I ≥
[

∞
∫

σ

|Ĥα(f)(λ)|2dµα(λ)

(

h
∫

0

λ2rp(1− jα(λt))
kp
2 ϕ(t)dt

)2/p]1/2

≥ Eσ(f) inf
σ≤λ<∞

{

λ2pr

h
∫

0

(1− jα(λt))
kp

2 ϕ(t)dt

}1/p

. (3.19)

Thus, combining (3.18) and (3.19) we have

(

h
∫

0

ωp
k(B

rf, t)2,µαϕ(t)dt

)1/p

≥ Eσ(f) inf
σ≤λ<∞

{γλ,k,r,p(ϕ, h)}.

It follows that for all f ∈ W r
2,µα

(B) the inequality:

Eσ(f)
(

∫ h

0
ωp
k(B

rf, t)2,µαϕ(t)dt
)1/p

≤ 1

inf {γλ,k,r,p(ϕ, h) : σ ≤ λ < ∞} .

Passing to the supremum with respect to all f ∈ W r
2,µα

(B) in this inequality, we obtain
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Ξσ,k,r,p(ϕ, h) = sup
f∈W r

2,µα
(B)

Eσ(f)2,µα
(

∫ h

0
ωp
k(B

rf, t)2,µαϕ(t)dt
)1/p

≤ 1

inf {γλ,k,r,p(ϕ, h) : σ ≤ λ < ∞} .

Thus, the upper estimate proved.

To obtain a lower estimate, we construct the function fǫ ∈ W r
2,µα

(B) so that the inequality takes
place:

sup
f∈W r

2,µα
(B)

Eσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαϕ(t)dt
)1/p

≥ Eσ(fǫ)2,µα

(

∫ h

0
ωp
k(B

rfǫ, t)2,µαϕ(t)dt
)1/p

. (3.20)

Let us proceed to the proof of the inequality (3.20). Let’s take the function fǫ(x) ∈ W r
2,µα

(B)
constructed in [3] and such that

Ĥα(fǫ)(λ) =

{

|λ|−α− 1
2 if σ < |λ| < σ + ǫ

0, otherwise.

Then by using (3.13) and (3.14) we write

Eσ(fǫ)2,µα

(

h
∫

0

ωp
k(B

rfǫ, t)2,µαϕ(t)dt
)1/p

≥ 1
[

(σ + ǫ)2pr
∫ h

0
(1− jα((σ + ǫ)t))

kp

2 ϕ(t)dt
]1/p

. (3.21)

Therefore in virtue of the inequality (3.21) and from the definition (2.4) we obtain

sup
f∈W r

2,µα
(B)

Eσ(f)2,µα

(

h
∫

0

ωp
k(B

rf, t)2,µαϕ(t)dt
)1/p

≥ 1
[

(σ + ǫ)2pr
∫ h

0
(1− jα((σ + ǫ)t))

kp

2 ϕ(t)dt
]1/p

. (3.22)

Obviously, the left side of inequality (3.22) does not depend on ǫ, and the expression located
on its right side is the function of ǫ (with fixed values of other parameters). Since the left side of
inequality (3.22) does not depend on ǫ, then calculating the supremum with respect to ǫ from its
right side, we write

sup
f∈W r

2,µα
(B)

Eσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαϕ(t)dt
)1/p

≥ 1
(

σ2pr

∫ h

0
(1− jα(σt))

kp

2 ϕ(t)dt
)1/p

. (3.23)

Comparing the upper bound (3.19) and the lower bound (3.23), we obtain the required double
inequality.

Theorem is proved.

Remark 4. Previously, similar results were obtained in [22] for α = 0 and

in [32] : for α = −1

2
,

1

2r
< p ≤ 2, σ = n, j− 1

2
(nt) = cosnt, and also

in [31; 33] : for α =
1

2
, 0 < p ≤ 2, j 1

2
(t) =

sin t

t
, and

in [32] : for α = −1

2
, 0 < p ≤ 2, σ = n, j− 1

2
(nt) = cosnt.
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The corollary follows from the proved the theorem.

Let us find out what differential properties the weight function ϕ(t) must have in order to the
following equality holds

inf
σ≤λ<∞

{γλ,k,r,p(ϕ, h)} = γσ,k,r,p(ϕ, h).

Corollary 2. Let α > −1

2
and the weight function ϕ(t) defined on the segment [0, h] be non-

negative and continuously differentiable on it. If for all t ∈ [0, h] and p ∈ (0, 2], r ∈ N inequality

(2rp− 1)ϕ(t) − tϕ′(t) ≥ 0 (3.24)

holds, then for all σ > 0, h ∈
(

0,
qα+1,1

σ

)

we have

inf {γλ,k,r,p(ϕ, h) : σ ≤ λ < ∞} = γσ,k,r,p(ϕ, h)

and

Ξσ,k,r,p(ϕ, h) =
1

(

σ2pr

∫ h

0
(1− jα(σt))

kp

2 ϕ(t)dt
)1/p

.

Proof of Corollary 2. Since γλ,k,r,p(ϕ, h) it is sufficient to prove that under the above
assumptions on ϕ(t) and the function

ζ(y) = y2rp
h
∫

0

(1− jα(yt))
kp
2 ϕ(t)dt

for y ≥ σ is strictly increasing. Because

ζ ′(y) = 2rpy2rp−1

h
∫

0

(1− jα(yt))
kp
2 ϕ(t)dt+ y2rp

h
∫

0

d

dy
(1− jα(yt))

kp
2 ϕ(t)dt, (3.25)

then, using the easily verifiable identity

d

dy
(1− jα(yt))

kp

2 =
t

y

d

dt
(1− jα(yt))

kp

2 (3.26)

from (3.25) and taking into account (3.26) we have

ζ ′(y) = 2rpy2rp−1

h
∫

0

(1− jα(yt))
kp
2 ϕ(t)dt + y2rp−1

h
∫

0

d

dt
(1− jα(yt))

kp
2 (tϕ(t))dt.

Applying the method of integration by parts when calculating the second integral, we come to the
conclusion

ζ ′(y) = y2rp−1

[

(1− jα(yh))
kp

2 hϕ(h) +

h
∫

0

(1− jα(yt))
kp

2 [(2rp− 1)ϕ(t) + tϕ′(t)]dt

]

. (3.27)

Since |jα(y)| ≤ 1 for all y ∈ [0,∞), then by virtue of the (3.24) taking into account the condition
p ∈ (0, 2], r ∈ N from (3.27) we have ζ ′(y) ≥ 0 for y ≥ σ. Whence follows inf {ζ(y) : σ ≤ y < ∞} =
ζ(σ),which is equivalent to the equality

inf {γλ,k,r,p(ϕ, h) : σ ≤ λ < ∞} = γσ,k,r,p(ϕ, h).

Then, by virtue of the double inequality, from the theorem 3 we obtain the required equality.
Corollary is proved.
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Corollary 3. Let qα+1,1 be the smallest positive zero of the function jα+1(t), k ∈ N, r ∈ Z+,

0 < p ≤ 2, σ > 0, h ∈
(

0,
qα+1,1

σ

)

, α > −1

2
. Then the estimates

sup
f∈W r

2,µα
(B)

σ2rEσ(f)2,µα

(

∫ h

0
ωp
k(B

rf, t)2,µαd(1− jα(σt))
)1/p

=

(

kp

2
+ 1

(1− jα(σh))
kp

2
+1

)1/p

holds.

4. Approximation in L
2(Rm)

The exact Jackson–Stechkin inequality and its various generalizations have become the subject
of research for many specialists in the last 50 years.

For the multidimensional case, we only briefly list some classical important sharp results
pertaining to the Jackson inequality. The exact Jackson constant in the space L2(T

d) (d ∈ N, d > 1)
was obtained by Yudin [35; 21] (the order of the modulus of continuity is r = 1) in 1981. Similarly, in
the space L2(R

d), the exact Jackson inequalities were proved by Popov [21] for the case d = 2, 3, . . .
and r = 1. In the space L2(S

d−1) (Sd−1 is the unit sphere of R
d, d ≥ 3), the exact constants in

the Jackson inequalities were established by Arestov and Popov [2] (d = 3, 4, and r ∈ N), and by
Babenko [3] (d ≥ 5, r > 0). Berdysheva [4] obtained the exact Jackson inequality in L2(R

d) where
the definitions of exponential type and modulus of continuity use dilations of the corresponding
convex centrally symmetric sets.

Some historical information on Jackson–Stechkin inequalities in L2(Rm) are contained in [3; 4;
10; 13; 19; 27].

Let L2 = L2(Rm) be the Hilbert space of complex functions on R
m with inner product and

norm

(f, g) =

∫

Rm

f(x)g(x) dx, ‖f‖ =
√

(f, f).

The Fourier transform of the function f ∈ L2 is defined by the formula

f̂(y) =
1

(2π)m/2

∫

Rm

f(x)e−ix·ydx,

where x · y =
∑m

l=1 xl · yl is the scalar product of vectors x and y from R
m. The function f can be

expanded in terms of its Fourier transform f̂ as follows:

f(x) =
1

(2π)m/2

∫

Rm

f(y)eix·ydy. (4.1)

The Fourier transform in the space L2 satisfies the Plancherelle formula

(f, g) = (f̂ , ĝ), f, g ∈ L2.

Denote by Wσ the class of entire functions of exponential spherical type σ > 0 belonging to the
space. The class Wσ of entire functions consists of entire functions g ∈ L2 supported by supp ĝ
whose Fourier transform lies in the Euclidean ball Bm

σ =
{

x ∈ R
m : |x| =

√

(x, x) ≤ σ
}

of radius
σ > 0 and centered at the origin of the space R

m.
The best approximation of a function f from L2 by the class Wσ is the quantity

Aσf = inf {‖f − g‖ : g ∈ Wσ} . (4.2)
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A spherical shift with step h is an operator Sh acting according to the rule (see [3])

Shf(x) =
1

|Sm−1|

∫

Sm−1

f(x+ hξ)dξ,

where S
m−1 is the unit Euclidean sphere in R

m, |Sm−1| is its surface area.
Let I be the identity operator, k be a positive number. Following H.P. Rustamov [23] the

operator (I − Shf)
k
2 , we will call the difference operator of order k with step h and will be denoted

by ∆k
h:

∆k
h =

∞
∑

l=0

(−1)l





k

2
l



Sl
h,

and the modulus of continuity of the k-th order of the function f ∈ L2(Rm) is the function of the
variable τ > 0:

ωk(f, τ) = sup
{

‖∆k
hf‖ : 0 < h ≤ τ

}

.

Using the Plancherell formula, it is easy to verify that the value of the best approximation of
the function f ∈ L2(Rm) is expressed in terms of

A2
σf =

∫

|y|>σ

|f̂(y)|2dy.

In this paper, we study the problem of the exact constant Kσ(τ, k,m), τ > 0, k ≥ 1, m =
2, 3, . . . , in the Jackson–Stechkin inequality in the space L2(Rm)

Aσ(f) ≤ Kωk(f, τ), f ∈ L2(Rm).

The exact constant in this inequality can be represented as

Kσ(τ, k,m) = sup
{ Aσ(f)

ωk(f, τ)
: f ∈ L2(Rm

}

.

It is known [27, p. 176; 34] that the spherical shift operator Sh with step h > 0 acts on the function
ey(x) = eix·y like this:

Shey(x) =
1

|Sm−1|

∫

Sm−1

ei(x+hξ)·ydξ

=
eix·y

|Sm−1|

∫

Sm−1

eihξ·ydξ = jm−2
2

(h|y|)ey(x). (4.3)

Applying k times to both sides of equality (4.1) the spherical shift operator and using the
relation (4.3) we have

Sk
hf(x) =

1

(2π)m/2

∫

Sm−1

(jm−2
2

(h|y|))k f̂(y)eix·ydy. (4.4)

Based on the definition of the difference operator ∆k
h, by virtue of (4.4) we obtain

∆k
hf(x) =

∫

Rm

(1− jm−2
2

(h|y|))k
2 f̂(y)eix·ydy. (4.5)

Hence, by virtue of the Plancherelle formula, we have from (4.5)

‖∆k
hf‖2 =

∫

Rm

(1− jm−2
2

(h|y|))k |f̂(y)|2dy.
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5. Jackson–Stechkin Theorem in L
2(Rm)

In [7] Chernykh noted that since the functional

Jk(f, h) =

(

n

2

π
n
∫

0

ω2
k(f, t) sinnt dt

)1/2

less than the Jacksonian functional ωk

(

f,
π

n

)

(f 6= const) and, apparently, it is more natural for

characterizing the best approximations En−1(f) of periodic functions in L2. For the modulus of
smoothness ωk(f, h)2,µα we are considering, a similar situation is observed. We will show this in the
proof of Corollary 4 of Theorem 4.

Theorem 4. Let k ≥ 1, m ≥ 2, σ > 0. Then for any function f ∈ L2(Rm) we have

Aσ(f) ≤

(

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

σ2r
(

∫

2qα,1
σ

0
v(t) dt

)k/2

,

where qm−2
2

,1 is the smallest positive zero of the function jm−2
2

(t) and v(t) = vm−2
2

(t) is weight

function defined by formula (3.1).

Proof of Theorem 4. For any function f ∈ L2(Rm), taking into account the equality

Aσ(f) =

( ∫

|y|>σ

|f̂(y)|2dy
)1/2

and by virtue of Hölder’s inequality we have

A2
σ(f)−

∞
∫

σ

|f̂(y)|2jm−2
2

(t|y|)dy =

∞
∫

σ

|f̂(y)|2(1− jm−2
2

(t|y|))dy

=

∞
∫

σ

|f̂(y)|2− 2
k |f̂(y)| 2k (1− jm−2

2
(t|y|))dy

≤ A
2− 2

k
σ (f)

(

σ−4r

∞
∫

σ

y4r|f̂(y)|2(1− jm−2
2

(t|y|))kdy
)1/k

. (5.1)

Since

ω2
k(B

rf, t) = sup
0≤h≤t

∞
∫

0

y4r|f̂(y)|2(1− jm−2
2

(h|y|))kdy

then (5.1) implies

A2
σ(f)−

∞
∫

σ

|f̂(y)|2jm−2
2

(t|y|)dy ≤ A
2− 2

k
σ (f)σ− 4r

k ω
2
k

k (B
rf, t). (5.2)
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Multiplying both sides of the (5.2) inequality by the Babenko weight function v(t) = vm−2
2

(t) defined

by formula (3.1) and integrating them over t from zero to
2qα,1
σ

=
2qm−2

2
,1

σ
we get

2qα,1
σ
∫

0

A2
σ(f)v(t)dt−

2qα,1
σ
∫

0

∞
∫

σ

|f̂(y)|2jm−2
2

(t|y|)dyv(t)dt

≤ σ− 4r
k

2qα,1
σ
∫

0

A
2− 2

k
σ (f)ω

2
k

k (B
rf, t)v(t)dt, (5.3)

where qm−2
2

,1 is the smallest positive zero of the function jm−2
2

(t).

Since in [3] the inequality

2qα,1
σ
∫

0

jm−2
2

(t|y|)v(t)dt ≤ 0 for all |y|>1 (5.4)

was proved, so from (5.3) by virtue of the inequality (5.4), we obtain

A2
σ(f)

2qα,1
σ
∫

0

v(t) dt ≤ σ− 4r
k A

2− 2
k

σ (f)

2qα,1
σ
∫

0

ω
2
k

k (B
rf, t)v(t) dt.

Further, applying the properties of the generalized shift operator Thf (see [15; 3; 20]) and the
function V (t), we have

A
2
k
σ (f) ≤

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

σ
4r
k

∫

2qα,1
σ

0
v(t) dt

.

Hence it follows that

Aσ(f) ≤

(

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

σ2r
(

∫

2qα,1
σ

0
v(t) dt

)k/2

.

Theorem is proved.

The exact Jackson inequality in the space L2(R
d)

Eσ(f)2 ≤
1√
2
ω
(

f,
2qd/2−1

σ

)

2
(5.5)

It was proved by Ibragimov, Nasibov [12] for d = 1 and by Popov [21] for d = 1, 2, 3 and by
Babenko[3] and by Moskovsky [17] for all d, and by Yudin [36] in L2(T

d). The proof of Jackson’s
inequalities (5.5) in spaces L2 with an exact constant and an optimal argument in the modulus of
continuity is an important line of research on extremal problems in approximation theory. It was
proved by Chernykh [7] for d = 1, by Moskovsky [18] for d = 4, by Gorbachev [9] in general case.
In the weighted spaces L2,α(R

d), the exact Jackson inequalities are known only for d = 1. For the
case of even functions, they were proved by Babenko [3] and Moskovskii [17].
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Corollary 4. Let k ∈ R+, k ≥ 1, σ > 0, m ≥ 2, α =
m− 2

2
. Then for any function f ∈ L2(Rm)

there is an inequality

Aσ(f) ≤ σ−2rωk

(

Brf,
2qα,1
σ

)

,

where qα,1 is the smallest positive zero of the function jα(t).

Proof of Corollary 4. Let us first show that the functional

Gk

(

f,
qα,1
σ

)

=

(

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

σ2r
(

∫

2qα,1
σ

0
v(t) dt

)k/2

less than ωk(f,
2qα,1

σ ). Indeed, the monotonicity of ωk(f, t) implies that

Gk

(

f,
2qα,1
σ

)

=

(

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

σ2r
(

∫

2qα,1
σ

0
v(t) dt

)k/2

≤ σ−2rωk

(

Brf,
2qα,1
σ

)

. (5.6)

From Theorem 4, by virtue of (5.6), we have

Aσ(f) ≤

(

∫

2qα,1
σ

0
ω

2
k

k (B
rf, t)v(t) dt

)k/2

σ−2r
(

∫

2qα,1
σ

0
v(t) dt

)k/2

= Gk

(

f,
2qα,1
σ

)

≤ σ−2rωk

(

Brf,
2qα,1
σ

)

.

Corollary 4 is proved.

Remark 5. Earlier in [17; 3; 10; 13] exact constants in the Jackson–Stechkin inequality were
obtained. In Corollary 4 of Theorem 4, the exact constant obtained in the inequality Jackson–
Stechkin coincides with the exact result of A.G. Babenko [3] for k ≥ 1. The proof of Corollary 4 of
Theorem 4 given here differs from the proof of the theorem of A.G. Babenko [3], A.V. Moskovsky [17],
D.V. Gorbachev [9; 10], V. I. Ivanov [13].
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