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FINITE GROUPS WITH ABSOLUTELY F-SUBNORMAL

MAXIMAL SUBGROUPS1

I. L. Sokhor

A subgroup M of a group G is an n-maximal subgroups of G if there is a subgroup chain M = Mn ≤

Mn−1 ≤ . . . ≤ M1 ≤ M0 = G such that Mi+1 is a maximal subgroup of Mi. We establish a criterion for a

group with absolutely F-subnormal n-maximal subgroups to belong to a subgroup-closed saturated formation F

containing all nilpotent groups.
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И. Л. Сохор. Конечные группы с абсолютно F-субнормальными максимальными подгруп-

пами.

Подгруппа M группы G является n-максимальной подгруппой в группе G, если существует цепоч-

ка подгрупп M = Mn ≤ Mn−1 ≤ . . . ≤ M1 ≤ M0 = G такая, что Mi+1 — максимальная подгруппа

в Mi. Для группы с абсолютно F-субнормальными n-максимальными подгруппами установлен критерий

принадлежности наследственной насыщенной формации F, содержащей все нильпотентные группы.
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Introduction

All groups in this paper are finite.

The structure of a group depends in large measure on the properties of its maximal subgroups,
in particular, the manner of embedding a maximal subgroup into the group. Remind that a proper
subgroup M of a group G is called maximal in G if whenever M ≤ H ≤ G we have M = H or
H = G. A subgroup M is an n-maximal subgroup of a group G if there is a subgroup chain

M = Mn ≤ Mn−1 ≤ . . . ≤ M1 ≤ M0 = G

such that Mi+1 is a maximal subgroup of Mi for every i.

Huppert [1] proved that a group with all 2-maximal subgroups normal is supersolvable and
a group with all 3-maximal subgroups normal is a solvable group of rank at most 2. Janko [2]
described groups in which 4-maximal subgroups are normal. Mann [3] investigated groups with all
n-maximal subgroups subnormal for arbitrary n.

The concept of formational subnormality is a generalization of the concept of subnormality.
Let F be a formation. A subgroup H of a group G is F-subnormal in G if H = G or there is a
subgroup chain

H = H0 ⋖H1 ⋖ . . .⋖Hn = G

such that Hi/Hi−1Hi
∈ F for every i (or, equivalently, HF

i ≤ Hi−1Hi
). Here we write H ⋖ G if H

is a maximal subgroup of G and we denote by HG =
⋂

g∈GHg the core of H in G. A subgroup H
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of a group G is called absolutely F-subnormal in G if any subgroup L containing H is F-subnormal
in G [4]. It is clear that any F-subnormal maximal subgroup is absolutely F-subnormal.

If F is a formation containing all nilpotent groups, then every subnormal subgroup of a solvable
group is F-subnormal, in particular, N-subnormal (see Lemma 3). Here N is the formation of
all nilpotent groups. In [5], the structure of a group with F-subnormal 2-maximal subgroups was
established for a lattice formation F. Groups with F-subnormal n-maximal subgroups with additional
restrictions on the number of prime divisors of the group order were studied in [6; 7].

Thus, it is natural to study a group in which n-maximal subgroups are absolutely F-subnormal.
In this paper, we establish a criterion for a group with absolutely F-subnormal n-maximal subgroups
to belong to a subgroup-closed saturated formation F containing all nilpotent groups.

1. Preliminaries

Let G 6= 1 be a group. Then there is an unrefinable subgroup chain

1 = Mk ⋖Mk−1 ⋖ . . . ⋖M1 ⋖M0 = G.

The number of subgroups in this chain is called its length. The length l(G) of a group G is the
maximal length of an unrefinable chain. The depth λ(G) of G is the minimal length of an unrefinable
chain.

Lemma 1. Let G be a group. If λ(G) = 1, then G is a group of prime order.

Proof. Since λ(G) = 1, then 1⋖G, and so G is a group of prime order. Lemma is proved.

Lemma 2. Let G be a group. If λ(G) = 2, then |π(G)| ≤ 2 and one of the following statements

holds.

(1) G is a group of prime power order.

(2) G = Cp ×Cq for some primes p and q with p 6= q.

(3) G is a non-nilpotent group and every proper subgroup of G is a group of prime power order.

Proof. Since λ(G) = 2, there is a subgroup chain

1⋖M ⋖G.

Therefore, |M | = q is prime and G is solvable by [8, IV.7.4]. A maximal subgroup of a solvable
group has a prime power index. Therefore, we consider the following cases.

(1) q ∈ π(|G : M |). Then |G| = qα and G is a group of prime power order.

(2) q /∈ π(|G : M |). Then |G| = pαq for a prime p ∈ π(G) and p 6= q. If M is normal in G, then
|G : M | = p, |G| = pq and G = Cq ⋊ Cp. If, in addition, p < q, then G = Cp × Cq. Let M be not
normal in G. Then M = NG(M) is a Sylow q-subgroup of G, and according to [8, IV.2.6], there is a
q′-Hall subgroup N such that G = N ⋊M . Since M is a maximal subgroup of G, we conclude that
N is a minimal normal subgroup of G. Consequently, N is an elementary abelian p-group because
G is solvable. Suppose that there is a proper subgroup H of G such that |π(H)| = 2. It follows that
M ≤ H < G and M = H, but |π(M)| = 1, a contradiction. Thus, every proper subgroup of G has
a prime power order.

Lemma is proved.

Note that groups with λ(G) = 3 or λ(G) = 4 were described in [9].

Lemma 3. Let F be a formation containing all nilpotent groups. Every subnormal subgroup of

a solvable group G is F-subnormal in G.
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Proof. Let H be a subnormal subgroup of G. There is a composition series

1⋖ . . . ⋖H = H0 ⋖H1 ⋖ . . .⋖Hn = G.

Since G is solvable, we have |Hi+1 : Hi| is prime for every i. Therefore, Hi+1/Hi ∈ N ⊆ F for every
i and H is F-subnormal in G.

Lemma is proved.

Lemma 4. Let F be a subgroup-closed formation. If G ∈ F, then every subgroup of G is

absolutely F-subnormal.

Proof. Let H be a subgroup of a group G ∈ F. There is subgroup chain

H = H0 ⋖H1 ⋖ . . .⋖Hn = G.

Since F is a subgroup-closed formation and G ∈ F, we deduce Hi ∈ F and Hi+1/(Hi)Hi+1
∈ F for

every i. Consequently, H is F-subnormal in G. Thus, every subgroup of G is F-subnormal in G.
Therefore every subgroup containing H is F-subnormal in G and H is absolutely F-subnormal in G.

Lemma is proved.

2. The main result

Lemma 5. Let F be a formation and let G be a simple group. If G contains an F-subnormal

subgroup, then G ∈ F.

Proof. Let H be an F-subnormal subgroup of a simple group G. In that case there is a subgroup
chain

H = H0 ⋖H1 ⋖ . . . ⋖Hn−1 = M ⋖Hn = G

such that Hi/Hi−1Hi
∈ F for every i. In particular, G/MG

∼= G ∈ F in view of G is a simple group.

Lemma is proved.

Theorem 1. Let F be a subgroup-closed saturated formation containing all nilpotent groups and

let G be a group with all n-maximal subgroups absolutely F-subnormal. The following statements hold.

(1) If n ≤ 2, then G ∈ F.

(2) If 3 ≤ n ≤ 4, then either G ∈ F or G is a solvable group of chief length is no more than n−1.

(3) If n ≥ 5, then either G ∈ F or G is a solvable group of chief length is no more than n− 1
or G is an unsolvable group with 3 ≤ λ(G) ≤ n− 1.

Proof. Let n = 1. Since every maximal subgroup of G is absolutely F-subnormal in G, every
maximal subgroup of G is F-subnormal in G. Therefore G ∈ F by [10, Lemma 4].

Let n = 2 and let M be a maximal subgroup of G. If M = 1, then |G| is prime and G ∈ N ⊆ F.
Assume that M 6= 1. In that case there is a subgroup chain

K ⋖M ⋖G.

Since K is a 2-maximal subgroup of G, we deduce that K is absolutely F-subnormal in G by the
choice of G. Hence M is F-subnormal in G and G ∈ F according to [10, Lemma 4].

Let n > 2 and G /∈ F. If λ(G) = 1, then by Lemma 1, G ∈ F, a contradiction. Hence λ(G) ≥ 2.
Suppose that λ(G) ≥ n. In that case for every maximal subgroup M of G, there is a subgroup chain

Mn ⋖ . . .⋖M1 = M ⋖G0 = G.
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Since Mn is an n-maximal subgroup of G, we get Mn is absolutely F-subnormal in G by the choice
of G. Hence M is F-subnormal in G and G ∈ F by [10, Lemma 4], a contradiction. Consequently,
λ(G) ≤ n− 1.

Let n = 3. Then λ(G) = 2 by the above. In view of Lemma 2, we obtain that G is solvable.
Consequently, the length of a chief series of G is equal to 2 since the depth of a solvable group is
equal to the length of its chief series by [11, Theorem 2].

Let n = 4. Then 2 ≤ λ(G) ≤ 3 by the above. If λ(G) = 2, then according to Lemma 2, G is
solvable, and the chief length of G is equal to 2 by [11, Theorem 2]. Let λ(G) = 3. If G is solvable,
then the chief length of G is equal to 3 by [11, Theorem 2]. Let G be unsolvable. If l(G) = λ(G) = 3,
then G is supersolvable in view of [12], a contradiction. Hence l(G) > 3 and G contains a 4-maximal
subgroup that is absolutely F-subnormal in G. By [9, Theorem 1], G is simple. Consequently, G ∈ F

by Lemma 5, a contradiction.

Let n ≥ 5. By the above, 2 ≤ λ(G) ≤ n − 1. If G is solvable, then the chief length of G is no
more than n− 1 by [11, Theorem 2]. Assume that G is unsolvable. If λ(G) = 2, then G is solvable
according to Lemma 2, a contradiction. Therefore we have 3 ≤ λ(G) ≤ n− 1.

Theorem is proved.

Corollary 1. Let F be a subgroup-closed saturated formation containing all nilpotent groups.

If G is an unsolvable group with all n-maximal subgroups absolutely F-subnormal (n ≤ 4), then

G ∈ F.

Proof. If n ≤ 2, then G ∈ F by Theorem 1. Let 2 < n ≤ 4. Assume that G /∈ F. According to
Theorem 1, G is a solvable group, a contradiction.

Corollary is proved.

Corollary 2. Let F be a subgroup-closed saturated formation containing all nilpotent groups.

Every 3-maximal subgroup of a group G is absolutely F-subnormal if and only if either G ∈ F or

every primary cyclic subgroup of G is absolutely F-subnormal or self-normalizing.

Proof. Assume that every 3-maximal subgroup of a group G is absolutely F-subnormal in G.
By Theorem 1, either G ∈ F, or G is a solvable group of chief length 2. Let G /∈ F. Since G is
solvable, we deduce that λ(G) = 2 by [11, Theorem 2]. Hence G is a non-nilpotent group in which
every proper subgroup is of prime power order in view of Lemma 2. Consequently, every primary
cyclic subgroup of G is absolutely F-subnormal or self-normalizing by [10, Theorem 2].

Conversely, if G ∈ F, then by Lemma 4, every subgroup of G is absolutely F-subnormal in G.
Assume that G /∈ F and every primary cyclic subgroup of G is absolutely F-subnormal or self-
normalizing. According to [10, Theorem 2], G is a non-nilpotent group in which every proper
subgroup is of prime power order. By [13], we get G = P ⋊ 〈x〉, where P is an elementary abelian
Sylow p-group for a prime p ∈ π(G), 〈x〉 is a non-normal Sylow subgroup of order q for a prime
q ∈ π(G), p 6= q and 〈x〉 acts irreducibly on P . In that case, every 3-maximal subgroup K is
contained in P . Hence K and every subgroup H of G containing K are subnormal in G. Since G is
solvable, K as well as every subgroup containing K is F-subnormal in G by Lemma 3, and so, K is
absolutely F-subnormal in G.

Corollary is proved.
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