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BLOCK DESIGNS, PERMUTATION GROUPS AND PRIME VALUES

OF POLYNOMIALS1 ,2

Gareth A. Jones and Alexander K. Zvonkin

A recent construction by Amarra, Devillers and Praeger of block designs with specific parameters and large

symmetry groups depends on certain quadratic polynomials, with integer coefficients, taking prime power values.

Similarly, a recent construction by Hujdurović, Kutnar, Kuzma, Marušič, Miklavič and Orel of permutation

groups with specific intersection densities depends on certain cyclotomic polynomials taking prime values. The

Bunyakovsky Conjecture, if true, would imply that each of these polynomials takes infinitely many prime values,

giving infinite families of block designs and permutation groups with the required properties. We have found

large numbers of prime values of these polynomials, and the numbers found agree very closely with the estimates

for them provided by Li’s recent modification of the Bateman–Horn Conjecture. While this does not prove that

these polynomials take infinitely many prime values, it provides strong evidence for this, and it also adds extra

support for the validity of the Bunyakovsky and Bateman–Horn Conjectures.
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Г.А. Джонс, А. К. Звонкин. Блок-схемы, группы перестановок и простые значения много-

членов.

Конструкция блок-схем с заданными параметрами и большими группами симметрии, полученная недав-

но К.Амарра, А.Девиллерс и Ш. Прегер, опирается на некоторые квадратичные полиномы с целыми ко-

эффициентами, значения которых являются степенями простых чисел. Аналогично, конструкция групп

перестановок с заданными плотностями пересечений, которую недавно получили А.Хуйдурович, К.Кутнар,

Б.Кузма, Д.Марушич, Ш. Миклавич и М.Орел, использует некоторые круговые полиномы с простыми

значениями. Гипотеза Буняковского, если она верна, означает, что каждый из этих многочленов имеет

бесконечно много простых значений, порождая бесконечные семейства блок-схем и групп перестановок

с требуемыми свойствами. В статье найдено большое количество простых значений этих полиномов, и

найденные числа очень хорошо согласуются с оценками для них из недавней модификации гипотезы

Бейтмана — Хорна, предложенной В.Ли. Полученный результат является серьезным аргументом в поль-

зу того факта, что указанные полиномы принимают бесконечно много простых значений, хотя и не до-

казывает его. Кроме того, наш результат также является аргументом в пользу справедливости гипотез

Буняковского и Бейтмана — Хорна.

Ключевые слова: блок-схема, группа перестановок, плотность пересечений, многочлен, простое число,

гипотеза Бейтмана — Хорна, гипотеза Буняковского.
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1. Introduction

The majority of applications of the famous Bateman–Horn Conjecture in Number Theory (stated
fully in Section 4) belong within that field. However, it may also be applied in other branches of
Mathematics. In [25] we have shown how it can be applied within Group Theory. The aim of the
present note is to show that it can also be useful in the combinatorial theories of block designs and
of intersecting sets.

1This paper is based on the results of the 2021 Conference of International Mathematical Centers “Groups
and Graphs, Semigroups and Synchronization”.

2Alexander Zvonkin was partially supported by the ANR project Combiné (ANR-19-CE48-0011).
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In [2], Amarra, Devillers and Praeger have recently constructed families of highly symmetric
2-designs which maximise certain parameters. Their construction depends on certain quadratic
polynomials with integer coefficients taking prime power values. In [21] Hujdurović, Kutnar, Kuzma,
Marušič, Miklavič and Orel have constructed permutation groups G of degree pq (p and q primes)
with intersection densities ρ(G) > 1, as counterexamples to a conjecture by Meagher, Razafimahat-
ratra and Spiga in [29]. Their construction, presented in an invited talk at G2S2 by Klavdija Kutnar,
depends on certain cyclotomic polynomials Φk taking prime values. In both cases these polynomials
satisfy three simple necessary conditions which Bunyakovsky [7] in 1857 conjectured were also
sufficient for any polynomial to take infinitely many prime values. Unfortunately, this conjecture
has been proved only for polynomials of degree 1 (Dirichlet’s Theorem on primes in an arithmetic
progression). Nevertheless, the Bateman–Horn Conjecture [4], dating from 1962 and also proved
only for degree 1, gives estimates E(x) for the number Q(x) of positive integers t ≤ x at which a
given polynomial takes prime values. Using a recent improvement to the Bateman–Horn Conjecture
due to Li [27], we calculated these estimates E(x) for some of the simpler polynomials arising in [2],
taking x = 108, and compared them with the actual numbers Q(x) found by computer searches.
As in various other applications of this conjecture (see [24; 25] for example), the estimates E(x)
are remarkably close to the actual values Q(x). Although this does not prove the existence of
infinite families of block designs or permutation groups in question, the accuracy of the estimates,
together with the abundance of examples found, provides strong evidence for it, and it also adds
to the growing body of evidence in favour of the more general Bunyakovsky and Bateman–Horn
Conjectures.

There have been many number-theoretic applications of the Bateman–Horn Conjecture (see [1]
for a survey), and a handful in areas such as combinatorics [16], cryptography [8; 34–36], elliptic
curves [3;14], error-correcting codes [26] and fast integer multiplication [13]. It seems likely that the
present paper and [2] represent its first application to block designs, just as [24; 25] are the first in
the areas of dessins d’enfants and permutation groups.

2. Primes versus prime powers

Although the problem in [2] requires prime power values of certain polynomials fn,r(t) ∈ Z[t],
it is easier to estimate the distribution of their prime values, using the Prime Number Theorem
and conjectures based on it. This restriction is no great loss, as the vast majority of prime powers,
up to any given large bound, are in fact prime: if π(x) is the usual function counting primes
p ≤ x, and Π(x) is its analogue for all prime powers pe ≤ x with e ≥ 1, then π(x)/Π(x) → 1
(quite rapidly) as x → ∞. For example, π(106)/Π(106) = 78 498/78 734 = 0.9970002 . . ., while
π(109)/Π(109) = 50 847 534/50 851 223 = 0.999927 . . . (see [12]). Nevertheless, we carried out a
more restricted search, over t = 1, . . . , 107, for proper prime power values fn,r(t) of the chosen
polynomials, finding just a few squares and one cube (see Section 13). However, in Section 15 we
show how to realise any even power p2i > 9 of an odd prime p as fn,r(0) for some polynomial fn,r,
a situation which has some interest for the construction of block designs.

3. The Bunyakovsky Conjecture

If a non-costant polynomial f(t) ∈ Z[t] is to take infinitely many prime values for t ∈ N

(equivalently, if it is prime for infinitely many such t), then the following conditions must be satisfied:

(a) f must have a positive leading coefficient (otherwise it will take only finitely many positive
values);

(b) f must be irreducible in Z[t] (otherwise all but finitely many of its values will be composite);
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(c) f must not be identically zero modulo any prime p (otherwise all its values will be divisible
by p).

In 1857 Bunyakovsky [7] conjectured that these three necessary conditions are also sufficient.
(Condition (c) is needed to avoid examples such as t2 + t+ 2, which satisfies (a) and (b) but takes
only even values.) For instance, if this were true it would imply Landau’s conjecture (studied also
by Euler [18]) that there are infinitely many primes of the form t2 + 1. However, the Bunyakovsky
Conjecture has been proved only in the case where f has degree 1: this is Dirichlet’s Theorem, that
if a and b are coprime integers then there are infinitely many primes of the form at+b (see [6, §5.3.2]
for a proof).

4. The Bateman–Horn Conjecture

In 1962 Bateman and Horn [4] proposed a very general conjecture (in what follows we will use the
abbreviation BHC) which comprises many previous conjectures and theorems and gives quantified
versions of them. It deals with a finite set of polynomials simultaneously taking prime values. For
our application to block designs it is sufficient to consider the case of a single polynomial, but in
the case of permutation groups we need the full version of the BHC. If we incorporate a recent
improvement due to Li [27], we get the following statement:

Conjecture 4.1 (Bateman and Horn, 1962; Li, 2019). Let f1, . . . , fk ∈ Z[t] be coprime polyno-
mials satisfying conditions (a) and (b) of the Bunyakovsky Conjecture, and let their product
f = f1 · · · fk satisfy condition (c). Denote by Q(x) the number of t ∈ N, t ≤ x, such that all
fi(t), i = 1, . . . , k, are prime. Then the asymptotic estimate E(x) for the number Q(x) is given by
the following formula:

Q(x) ∼ E(x) := C

x
∫

a

dt
∏k

i=1 ln fi(t)
as x → ∞ (4.1)

where

C = C(f) :=
∏

p

(

1−
1

p

)−k(

1−
ωf (p)

p

)

(4.2)

with the product over all primes p, and where ωf (p) is the number of congruence classes t ∈ Zp

such that f(t) = 0. In (4.1), one chooses a ≥ 2 large enough that the range of integration avoids
singularities, where some fi(t) = 1. (In our applications we can always take a = 2.) �

For the rest of this paper, f1, . . . , fk and their product f = f1 . . . fk will be polynomials satisfying
the above conditions.

Lemma 4.2 (Constant C(f)). The product in (4.2) converges to a constant C > 0.

This statement is far from trivial. Bateman and Horn, in their original paper [4], limit themselves
to a few hints. The first detailed proof was recently published in [1, Theorem 5.4.3], and it takes
seven pages. It is easily seen that the integral in (4.1) diverges as x → ∞, so we get the following

Corollary 4.3 (Infinitely many prime values). The estimate E(x) → ∞ as x → ∞; therefore,
if the BHC is true then Q(x) also goes to infinity: there are infinitely many integers t ∈ N such that
all fi(t), i = 1, . . . , k, are simultaneously prime.

As in the case of the Bunyakovsky Conjecture, the BHC, even when restricted to a single
polynomial f , has been proved only in the case where deg f = 1. This is the quantified version of
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Dirichlet’s Theorem, that for fixed coprime a and b the number of t ≤ x such that at+ b is prime
is asymptotic to

1

ϕ(a)

x
∫

2

dt

ln(at+ b)
,

where ϕ is Euler’s totient function. (Equivalently, the primes in the arithmetic progression at+ b
are asymptotically equally distributed among the ϕ(a) congruence classes of units mod a; see
[6, § 5.3.2] for a proof.)

An earlier special case of the BHC, applicable to a single quadratic polynomial f , is the
Conjecture F of Hardy and Littlewood [20], giving similar estimates. For this reason, the constants C(f)
are sometimes known as Hardy–Littlewood constants.

5. Heuristic argument for the ingredients of the Bateman–Horn Conjecture

Here we give a heuristic argument to explain certain ingredients of the formula (4.1) for the
Bateman–Horn estimate E(x).

The Prime Number Theorem provides two asymptotic estimates for the number π(x) of primes
p ≤ x as x → ∞, namely

π(x) ∼
x

lnx
and π(x) ∼ Li(x) :=

x
∫

2

dt

ln t
. (5.3)

The first is easy to use, but not very accurate; the second, involving the offset logarithmic integral

function Li(x), is harder to use but very much more accurate. For example, the number of primes
up to 1028 has been computed by David Baugh, see Entry A006880 of [31]: it is equal to

π(1028) = 157 589 269 275 973 410 412 739 598.

Now, the estimate by Hadamard and de la Vallée Poussin gives

1028

28 · ln 10
= 155 105 172 108 304 224 161 117 471.042

with the relative error −1.576%, while the offset logarithmic integral function gives

Li(1028) = 157 589 269 275 974 838 158 399 970.696

with the relative error 0.000000000000906% = 9.06 · 10−13 %.

In either case, (5.3) suggests that one can regard 1/ ln x as the probability that x (or, rather,
a randomly-chosen number close to x) is prime. Consider the “random variables” ξi(t) = 1 if fi(t)
is prime, and ξi(t) = 0 otherwise. The “probability” that ξi(t) = 1 is 1/ ln fi(t). If, in addition, we
presume that these variables, for any given t, are independent, then the probability that all fi(t)
are prime, or, in other words, the probability that the product η(t) := ξ1(t) · · · ξk(t) is equal to 1, is

P (t) =
1

∏k
i=1 ln fi(t)

. Notice that the mean value of η(t) is the expected value E(η(t)) = P (t).

The random variable η(t) is a “counting function”: as a first estimate for the number of t ≤ x
such that all fi(t) are prime, we may take the average number of times this variable is equal to 1.
Let us choose a so that all fi(t) > 1 for t ≥ a. Then, as t goes from a to x, we have

E
(

x
∑

t=a

η(t)
)

=

x
∑

t=a

E(η(t)) =

x
∑

t=a

P (t) ≈

x
∫

a

P (t)dt =

x
∫

a

dt
∏k

i=1 ln fi(t)
. (5.4)
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We cannot present any profound reasons for considering f1(t), . . . , fk(t) as independent for any
given t, but at least this assumption stands the test of a great number of experiments. However,
the same is not true when we vary the variable t. Therefore, a correcting term may be needed, and
this is the constant C(f).

First, if f(t0) ≡ 0 mod (p) for some integer t0 and prime p, then f(t) ≡ 0 mod (p) for all t ≡ t0
mod (p). We would like to avoid the situation when f(t) is divisible by p (or, equivalently, at least

one of fi(t) is divisible by p). The “probability” of the opposite event is ap = 1−
ωf (p)

p
.

Second, the probability that a “randomly chosen k-tuple of integers” (whatever that means) does

not contain any element divisible by p is bp =
(

1−
1

p

)k

. The ratio ap/bp used in the product (4.2)

resembles the conditional probability, though it is not one since it may well be > 1.

What remains is to assemble different parts of this Lego, but the corresponding procedure will
need a long discussion and a self-coherent construction of a “probabilistic model” of what takes place,
so we stop here. Anyway, we are not supposed to give a proof of the BHC; we only provide some
plausible speculations on the matter. “The proof of the pudding is in the eating”: the conjecture
works well, even surprisingly well, and this is what is important about it.

6. The constant C(f)

Computing the constant C(f) is a challenging problem in itself. As already mentioned above,
the mere existence of a limit is a non-trivial fact. By the way, the convergence is not absolute: by
changing the order of factors we may get a different limit value. This is not entirely surprising since
the product

∏

p≤x(1 − 1/p)−1 tends to infinity as x → ∞ (according to Mertens [30], this product

is asymptotically equivalent to ln(x)/µ where µ = e−γ and γ is the Euler–Mascheroni constant),
while the product

∏

p≤x(1−ωf(p)/p) tends to zero. To make matters worse, the rate of convergence
is, as one of our colleagues has put it, “frustratingly slow”.

In Section 9 we discuss the computation of ωf (p) for a single quadratic polynomial f . We will
see that it involves rather subtle number-theoretic methods, mainly the quadratic reciprocity law.
The case of cubic polynomials is treated in [37].

A highly advanced method, though still for a single polynomial, was proposed by H. Cohen [11].
For a quadratic polynomial it involves the techniques of L-functions and, in particular, of the
Riemann ζ-function. For polynomials of degree greater than 2 one also needs to know the Galois
group of the polynomial in question as well as the irreducible representations of this group. This
subject is also treated in Sections 5.6 and 5.7 of the recently published book [5].

We have no intention to compete with the above specialists. Therefore, we have computed the
products only over primes p ≤ 108. The constants C(f) thus obtained already give excellent results
in approximating the numbers of prime values of the polynomials we study in this paper.

Another interesting question is, how large (or how small) the constant C can be. Let us take,
for example, the well-known Euler polynomial f1(t) = t2 + t + 41 (taking prime values for t =
0, 1, 2, . . . , 39), and compare it with the polynomial f2(t) = t2 + t + 75. The constants C(f1) and
C(f2) are computed in [11] with the precision of 39 digits3. They are:

C(f1) = 6.639546354942843330647113715299775932938,

C(f2) = 0.621953359851974340008712574859256829058.

Since the integrals

∫ x

2

dt

ln fi(t)
, i = 1, 2, are very close to each other for large x, we conclude that

the first polynomial produces, approximately, 10.7 times as many primes as the second one.

3The values given in [11] ought to be multiplied by 2, as we have done here.
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Example 6.1 (Three pairs of polynomials). It is instructive to compare the following three
pairs of polynomials: (f1, f2) = (t, t + 2), (g1, g2) = (t, 2t + 1) and (h1, h2) = (t, 3t − 2). The
first pair corresponds to twin primes, the second one to Sophie Germain primes, and the third one
is encountered in the theory of divisible difference sets [19]. The equation f(t) = t(t+2) ≡ 0 mod p
has one root for p = 2 and two roots for all the other primes p. The corresponding constant is well
known: C(f) = 1.32032363169373914786 . . . The number of twin prime pairs is known up to 1018:
it is equal to 808 675 888 577 436, see Entry A007508 of [31]. Now, the BHC estimate gives

E(1018) = C(f) ·

1018
∫

2

dt

ln(t) ln(t+ 2)
≈ C(f) ·

1018
∫

2

dt

ln(t)2
= 808 675 901 493 606.3

with the relative error 0.0000016%.
It is easy to see that C(g) = C(f) (indeed, the numbers ωf (p) and ωg(p) are always the

same for every prime p), but the integral for the pair (g1, g2) is different: it is

∫ x

2

dt

ln(t) ln(2t+ 1)
.

Asymptotically, as x → ∞, the two integrals are equivalent but the second one gives better estimates
for the numbers of Sophie Germain primes (cf. Remark 12.1). For t ≤ 1014 we have 132 822 315 652
pairs of Sophie Germain primes, see Entry A092816 of [31]. Now, computing the BHC estimate we
get

E(1014) = C(g) ·

1014
∫

2

dt

ln(t) ln(2t+ 1)
= 132 822 400 531.22

with the relative error 0.000064%. Note that, in spite of so accurate estimates, the infinitude of
both the twin primes and the Sophie Germain primes remains unproved.

Finally, for the third pair, the number of solutions of the equation h(t) = t(3t − 2) = 0 mod p
is the same as in the two previous examples, except for p = 3. Indeed, ωf (3) = ωg(3) = 2 while
ωh(3) = 1. Therefore, the factor 1 − 2/3 = 1/3 in C(f) and C(g) is replaced with 1 − 1/3 =
2/3 in C(h). Since the integrals are asymptotically equivalent, we conclude that the pair (h1, h2)
produces, asymptotically, twice as many pairs of primes as the pairs (f1, f2) and (g1, g2), and the
only reason for that is their different behaviour modulo p = 3. �

A more systematic search for constants was carried out by Jacobson and Williams [22] (their
paper contains many interesting examples) and by Rivin [32] (which is, mostly, an experimental
work). Rivin carried out a large-scale experiment, computing thousands of constants C(f) for
randomly chosen polynomials. His observations do not yet have the status of conjectures, but they
may be formulated as questions.

Questions 6.2 (Rivin, [32]). Is it true that

(a) The mean value of C(f) over a grand ensemble of polynomials f is 1?

(b) For monic polynomials f whose coefficients (other than the leading one) are bounded by N ,
the maximum value of C(f) grows like Cmax = O(log logN)?

(c) The distribution of the values of C(f) is log-normal?

7. Block designs

Here, in order to provide motivation for our particular choice of polynomials f , we briefly
summarise the construction in [2] of block designs requiring certain polynomials to take prime
power values.

A 2-(v, k, λ) design D consists of a set P of v points, together with a set B of k-element subsets
of P called blocks, such that each pair of points lie in exactly λ blocks. (This implies that each point
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lies in the same number of blocks.) The automorphisms of D are the permutations of P which leave
the set B invariant; they form a group AutD.

If a subgroup G ≤ AutD acts transitively on blocks then it also acts transitively on points. The
latter action could be imprimitive, leaving invariant a partition C of P with d ≥ 2 classes, each of
size c ≥ 2, so that cd = v. Delandtsheer and Doyen showed in [15] that in this case there exist
positive integers m and n such that

mc+ n =

(

k

2

)

= nd+m.

These integers m and n are the Delandtsheer-Doyen parameters of D, with n and mc the numbers
of unordered pairs of points in any given block, lying in the same or in different classes of C.

In [2], Amara, Devillers and Praeger have explored the restrictions these parameters place on
subgroups G of AutD. Let K denote the permutation group of degree d induced by G on the set of
classes in C, and let H be the permutation group of degree c induced on any class in C by its setwise
stabiliser in G, so that G is embedded in the wreath product H ≀K ≤ Sc≀Sd. The rank Rank(X) of any
transitive permutation group X on a set Ω is the number of orbits of a point-stabiliser Xα (α ∈ Ω),
or equivalently of X on Ω×Ω; similarly, the pair-rank PairRank(X) is the number of orbits of X on
unordered pairs of distinct elements of X, so that (Rank(X)−1)/2 ≤ PairRank(X) ≤ Rank(X)−1.
The main result of [2] is that in the above circumstances

Rank(H)− 1

2
≤ PairRank(H) ≤ n and

Rank(K)− 1

2
≤ PairRank(K) ≤ m.

The authors of [2] give several constructions of designs D in which the ranks and pair-ranks
of H and K attain these upper bounds. One construction requires useful pairs of integers n, c:

Definition 7.1 (Useful pair). A pair of integers (n, c) is called useful (for this particular construc-
tion) if n ≥ 2 and c is a prime power such that

c ≡ 1mod (2n) and c+ n =

(

k

2

)

for some integer k ≥ 2n.

They need c to be a prime power in order to define H to be the unique subgroup of index n in
AGL1(c), acting naturally on the field Fc, while they take K = Sd acting naturally on Zd, so that
G := H ≀K has a transitive but imprimitive induced action on P = Fc ×Zd with d classes of size c.

By taking d = 1 +
c− 1

n
(the number of orbits of H on Fc) and defining B to be the set of images

under G of a carefully-chosen k-element subset B ⊂ P they obtain a 2-(cd, k, λ) design D for some λ,
admitting G as a block-transitive and point-imprimitive group of automorphisms. This design has
Delandtsheer–Doyen parameters m = 1 and n, with Rank(H) = PairRank(H) + 1 = n + 1 and
Rank(K) = PairRank(K) + 1 = 2.

The conditions for the pair n, c to be useful imply that, if r denotes the least positive remainder

of k mod (4n), then

(

r

2

)

≡

(

k

2

)

≡ n + 1 mod (2n). Thus, for fixed positive integers n ≥ 2 and

r < 4n with

(

r

2

)

≡ n+1 mod (2n) they need integers k = 4nt+ r for some integer t ≥ 0 such that

fn,r(t) :=

(

k

2

)

− n = 8n2t2 + 2n(2r − 1)t+
(r(r − 1)

2
− n

)

is a prime power c. If the polynomial fn,r takes prime power values for infinitely many integers t ≥ 0
then this construction yields an infinite family of block designs with the required parameters and
symmetry properties.
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Example 7.2 (Two polynomials fn,r). The smallest “useful pair” (n, c) is (2, 13), with r = k = 6
and d = 7, so that the corresponding design D has cd = 91 points and |G| = 7! ·787 automorphisms.
This example arises from the polynomial fn,r(t) = f2,6(t) = 32t2 +44t+13 taking the value c = 13
at t = 0. Note that f2,6(1) = 89 is prime, giving a design on cd = 89 · 45 = 4005 points with
|G| = 45! · (89 · 44)45, whereas f2,6(2) = 697 = 17 · 41 is not a prime power and therefore does not
correspond to a design in this family.

Another useful pair is (n, c) = (2, 53), with k = 11, r = 3 and d = 7, giving a smaller polynomial
f2,3(t) = 32t2 + 20t + 1. This has its first prime power value f2,3(1) = 53, giving a design on
53 · 27 = 1431 points with |G| = 7! · (53 · 26)7. �

Note that, although this construction of block designs applies to any integer t ≥ 0 such that
fn,r(t) is a prime power, the number-theoretic conjectures and estimates we use are stated in terms
of integers t ≥ 1. This is not a problem here, since we are not concerned with individual block
designs but with the existence or otherwise of infinite families of them. In any case, the value

fn,r(0) =
r(r − 1)

2
− n is easily dealt with (see Section 15).

8. Verifying the Bunyakovsky conditions

The polynomials f of interest in [2], and hence the main focus of this note, are those of the form

f(t) = fn,r(t) = 8n2t2 + 2n(2r − 1)t+
(r(r − 1)

2
− n

)

(8.1)

for integers n ≥ 2 and r ≥ 1 with

r < 4n and
r(r − 1)

2
≡ n+ 1 mod (2n). (8.2)

Note that this last condition implies that r ≥ 3.

Lemma 8.1. If a polynomial f = fn,r of the form (8.1) satisfies (8.2), it also satisfies Buny-
akovsky’s conditions (a) and (c); it satisfies his condition (b) if and only if n is not a triangular
number a(a+ 1)/2, a ∈ N.

Proof. Clearly f satisfies condition (a) since n ≥ 1. As a quadratic polynomial, f is reducible
over Z if and only if its discriminant ∆ is a perfect square. Here

∆ = 4n2(2r − 1)2 − 32n2
(r(r − 1)

2
− n

)

= 4n2(8n + 1), (8.3)

and this is a square if and only if 8n + 1 is. Simple algebra shows that the solutions n ∈ N of
8n + 1 = l2 (l ∈ Z) are the triangular numbers n = 1, 3, 6, 10, . . ., those of the form a(a + 1)/2 for
some a = (l − 1)/2 ∈ N (readers may enjoy finding a geometric ‘proof without words’ for this), so
f will satisfy (b) if and only if n does not have this form.

We now check condition (c). If a prime p divides 2n then f reduces mod (p) to a constant
polynomial; this takes the value 1 since r(r − 1)/2 ≡ n + 1 mod (2n), so f is not identically zero
mod (p). If p does not divide 2n then f reduces to a quadratic polynomial, with at most two roots,
so again it cannot be identically zero. �

In order to apply the Bateman–Horn Conjecture to the polynomials fn,r, we therefore restrict
attention to those for which n is not a triangular number.
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9. Calculating ωf(p) for fn,r

Recall that ωf (p), which appears in the infinite product (4.2), is the number of roots of f mod (p)
for each prime p. We saw in the proof of Lemma 8.1 that ωf (p) = 0 for any prime p dividing 2n.
Primes p dividing 8n + 1 (and thus not dividing 2n) give ∆ ≡ 0 mod (p) by (8.3), and hence
ωf (p) = 1 by the quadratic formula. Similarly, all other primes p give ωf (p) = 2 or 0 as 8n+1 is or
is not a quadratic residue (non-zero square) mod (p).

In general, given any prime p and integer q, one can determine whether or not q is a quadratic
residue mod (p) by using the Legendre symbol

(

q

p

)

=











0 if q ≡ 0 mod (p);

1 if q is a quadratic residue mod (p);

−1 otherwise.

.

(See [23, Chapter 7] for quadratic residues and the Legendre symbol.) Clearly
(

q

p

)

=

(

q′

p

)

if q ≡ q′ mod (p),

and since the quadratic residues form a subgroup of index 2 in the group of units mod (p) we have
the multiplicative property, that

(

qq′

p

)

=

(

q

p

)(

q′

p

)

for all q, q′ ∈ Z. Using these rules one can reduce the calculation of the Legendre symbol to the
cases where q is an odd prime. In such cases one can use the Law of Quadratic Reciprocity, that if
p and q are distinct odd primes then

(

q

p

)

=

(

p

q

)

if p or q ≡ 1 mod (4),

while
(

q

p

)

= −

(

p

q

)

if p ≡ q ≡ −1 mod (4).

We also have
(

2

p

)

= 1 or − 1 as p ≡ ±1 or ± 3 mod (8),

and
(

−1

p

)

= 1 or − 1 as p ≡ 1 or − 1 mod (4).

By iterating these rules one can reduce the values of p and q until they are small enough to be dealt
with by inspection.

We have seen that if f = fn,r then ωf (p) = 0 for all primes p dividing 2n. For primes p not
dividing 2n, by the definitions of the function ωf and the Legendre symbol, the quadratic formula

gives ωf (p) =

(

∆

p

)

+ 1. We will use this in the following examples.

Example 9.1. The smallest value of n which is not a triangular number is n = 2, giving
8n+ 1 = 17. Since 17 ≡ 1 mod (4) we have

(

17

p

)

=
( p

17

)

for any odd prime p. By squaring integers one sees that the quadratic residues mod (17) are
±1,±2,±4 and ±8 (in fact, under multiplication mod (17) they form a cyclic group of order 8,
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generated by 2). Thus, if f = f2,r for some r then ωf (p) = 2 for odd primes p ≡ ±1,±2,±4 or ±8
mod (17), while ωf (p) = 0 for primes p ≡ ±3,±5,±6 or ±7 mod (17). For the remaining primes p
we have ωf (2) = 0 and ωf (17) = 1. �

Example 9.2. The second smallest value of n which is not a triangular number is n = 4, giving
8n+ 1 = 33. In this case multiplicativity and quadratic reciprocity give

(

33

p

)

=

(

3

p

)(

11

p

)

=
(p

3

)( p

11

)

for all odd primes p 6= 3, 11, since 3 ≡ 11 mod (4) so that any minus signs cancel. Now the
quadratic residues mod (3) and mod (11) are 1 and 1, 3, 4, 5, 9 respectively. The primes p for
which 33 is a quadratic residue mod (p) are those which are both residues or both non-residues
mod (3) and mod (11), so solving the relevant pairs of simultaneous congruences gives the classes
±1,±2,±4,±8,±16 mod (33) (forming a cyclic group generated by 2). If f = f4,r for some r then for
odd primes p in these classes we have ωf (p) = 2, whereas for p ≡ ±5,±7,±10,±13,±14 mod (33)
we have ωf (p) = 0. For the remaining primes p we have ωf(2) = 0 and ωf (3) = ωf (11) = 1.

Notice that the classes ±3,±6,±9,±12,±15 and ±11 are not present in the above two lists:
they are not coprime with 33 and therefore cannot be residues of a prime p > 11 modulo 33. �

Example 9.3. The next case n = 5 is similar to Example 9.1 since 8n + 1 = 41 is prime.
We find that ωf (2) = ωf (5) = 0 and ωf (41) = 1, while for other primes p we have ωf (p) = 2 or 0 as
p is or is not a quadratic residue mod (41). These are ±1,±2,±4,±5,±8,±9,±10,±16,±18,±20.

For other permitted values of n the process is similar: thus for n = 7, 8 and 9 we have 8n+1 =
57 = 3 · 19, 65 = 5 · 13 and 73 which is prime. However, in some cases the process can be lengthier,
depending on the factorisation of 8n+ 1. We give just one more typical example.

Example 9.4. If n = 13 then 8n + 1 = 105 = 3 · 5 · 7. Since 3 ≡ 7 ≡ −1 mod (4) while 5 ≡ 1
mod (4) we have

(

105

p

)

=

(

3

p

)(

5

p

)(

7

p

)

=
(p

3

)(p

5

)(p

7

)

for all primes p ≥ 11, so for such p we have ωf (p) = 0 or 2 as p is a quadratic residue modulo an
even or odd number of the primes 3, 5 and 7. Since the quadratic residues modulo these primes are
generated by 1, −1 and 2 respectively, this is easily determined in terms of congruences mod (105).
(For some primes p, short-cuts are possible: for instance 105 ≡ −1 mod (53), so

(

105
53

)

=
(

−1
53

)

= 1,
and similarly

(

105
107

)

=
(

−1
107

) (

2
107

)

= (−1)2 = 1.) For p = 3, 5 or 7 we have ωf (p) = 1, while
ωf (2) = ωf (13) = 0. �

Since the values of ωf (p) depend only on a few simple congruences for p, it is straightforward
to program Maple to determine the factors in the infinite product (4.2) and hence to evaluate C.
Note also that this part of the process depends only on n, and not on r, so that polynomials fn,r
with the same parameter n can be dealt with simultaneously.

10. Evaluating the estimates

Since the factors in (4.2) approach 1 quite slowly as p → ∞, convergence of this infinite product
is rather slow, and one needs to multiply many terms in order to obtain good approximations for C.
In our computations we used all the primes p ≤ 108.

Maple calculates the definite integral in (4.1) by numerical quadrature. We found that running
times were less than a second. Bateman and Horn simplified this part of the process by replacing
ln(f(t)) with deg(f) ln(t) in (4.1), thus ignoring the leading coefficient of f together with all non-
leading terms. No doubt, working in the early 1960s without resources such as Maple, they found
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that this shortcut was essential, especially in cases involving more than one polynomial. Li’s recent
improvement [27], using ln(f(t)), certainly leads to more accurate estimates. In fact, the non-leading
terms have remarkably little effect on the value of the integral (so again, r is almost irrelevant),
whereas most of the extra accuracy comes from including the leading coefficient. For instance, the
estimates E(108) for the polynomials f2,3(t) = 32t2 + 20t + 1 and f2,6(t) = 32t2 + 44t + 13, given
in the next section, differ by only 0.29.

For each polynomial f we used Maple to find the actual number Q(x) of prime values of f(t)
for t ≤ x = 108. Since, for example, f5,r(10

8) ≈ 2 · 1018, this was the most time-consuming part of
our computations, with running times of about two hours on a modest laptop.

11. On the role of experiment in Mathematics: a digression

The great mathematicians of former times did not disdain experiment: Euler, Gauss, Dirichlet,
Riemann and many others carried out extensive computations. Then, for a long period Mathematics
evolved into an abstract domain, where the main subjects of study were structures, definitions and
proofs, with a very modest place reserved for examples, quite often rather trivial ones.

The situation has changed dramatically with the advent of computers. There is now a journal
Experimental Mathematics (many other journals also willingly accept experimental works), a series
of Springer monographs “Algorithms and Computation in Mathematics” (29 volumes have already
been published), and a multitude of specialized mathematical software, such as Maple, Mathematica,
GAP, Pari/GP, Sage, etc. Still, the old traditions are not always ready to cede ground. Let us take,
for example, the Goldbach conjecture. We still do not know whether every even number has at least
one representation as a sum of two primes. But what happens “in the real life”? This information is
hidden from us: you will not find it in any Number Theory book. Meanwhile, the reality is interesting
in itself. Take, for example, n = 109: this number has 2 274 205 different representations as a sum
of two primes. And this is not an exception: this is the rule. The representations of even numbers
as sums of two primes abound, and their number grows with n, with slight fluctuations depending
on the factorization of this number. If Mathematics is not only about proofs but also about the
actual behavior of mathematical entities, then the above information should be considered as very
valuable.

Let us now say a few words about primality testing. The most notoriously difficult integers for
factorization are the RSA numbers (see [33]) used in cryptography. The current record, established in
February 2020, is a factorization of a 250-digit number into two 125-digit factors. This computation,
if carried out on a single one-gigahertz processor, would take 5670 years. Now, the Maple function
isprime, carried out on a modest laptop, tells us that the number in question is composite, in
0.00011 seconds. The next challenge is a 260-digit number which has not been factored so far (as of
December 2022). Maple tells us that this number is composite in 0.00017 seconds.

The Maple function isprime uses the Rabin–Miller test; if necessary, it repeats this test many
times. The Rabin–Miller test is probabilistic rather than deterministic. If an integer is prime, the
test will always declare it to be prime. If it tells us that a number is composite then this answer is
true (no probability involved). But, when applied to a composite number it may erroneously take
it for a prime. The worst case for this test is represented by the Carmichael numbers (see [10; 23]):
they are composite, but the probability of taking such a number for a prime may approach 1/4. (By
the way, Carmichael numbers are themselves very rare; for the majority of composite numbers the
probability of an erroneous answer is much smaller.) But we may apply the test, say, 50 times, and
thus get the error probability equal to 2−100 ≈ 10−30. This probability is so small that it can be
regarded as 0 for practical purposes.4 But if some doubts still persist we may just apply another 50
tests, that is, just use the function isprime, once again. It will not take long, while the probability
of an error will be reduced to 10−60 since the two series of tests are independent of each other.

4In forty years of use of the test, no such incident has ever been reported.
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Note finally that our study is asymptotic. Therefore, even if we have been extremely unlucky
and a few of the so many prime values of the polynomials f we found are actually composite, this
will have a negligible effect on the value of Q(x) and hence on our evidence.

12. The estimates and their accuracy

12.1. The case n = 2

The smallest allowed value for the parameter n is 2, so condition (8.2) implies that r = 3 or 6.
In either case, evaluating ωf (p) as in Example 9.1, and taking the product in (4.2) over all primes
p ≤ 108, we found that C = 4.721240276 . . . Putting r = 3 gives

f(t) = f2,3(t) = 32t2 + 20t+ 1.

Taking x = 10i for i = 3, 4, . . . , 8 we found the estimates E(x) for the values of Q(x) shown in
Table 1. The final column, showing the relative error, reveals the accuracy of these estimates.

Table 1: Numbers Q(x) and estimates E(x) for f2,3

x Q(x) E(x) relative error

103 326 314.49 −3.53%
104 2421 2404.86 −0.67%
105 19 394 19 438.26 0.23%
106 162 877 163 182.75 0.19%
107 1 405 448 1 406 630.14 0.084%
108 12 357 532 12 362 961.06 0.044%

12.2. The cases with n ≤ 9

The process for the remaining polynomials fn,r with non-triangular numbers n ≤ 9 was similar,
with x = 108 in all cases. Table 2 summarises the results.

Remark 12.1 (Leading coefficient). The greater the leading coefficient of a polynomial, the
more significant is Li’s improvement in [27] as compared with the initial Bateman–Horn formula
in [4]. For example, in the case of f(t) = f9,5(t) = 648t2 + 162t + 1, we have two corresponding
estimates

ELi = C ·

108
∫

2

dt

ln(f(t))
and EBH =

C

2
·

108
∫

2

dt

ln(t)

for x = 108, with relative errors 0.0046% and 18.7% respectively.

This does not contradict the fact that the two estimates are asymptotically equivalent. Indeed,
the relative error of EBH steadily decreases to approximately 2% when the upper limit x of the
integration approaches 1070. (Of course, we did not count the true number Q(x) of prime values of
this polynomial: instead, we took ELi(x) as if it were the true value of Q(x).)

13. Prime power values

We restricted our estimates to prime values of the polynomials fn,r, since the Bunyakovsky
and Bateman–Horn Conjectures have nothing to say about composite values. However, since the
constructions of block designs in [2] apply to values which are prime powers, not just primes, we
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Table 2: Complete list of irreducible polynomials fn,r defined in (8.1) and satisfying conditions (8.2),
for n ≤ 9. The constants C(f) are computed over primes p ≤ 108

(n, r) f(n,r)(t) C(f) Q(108) E(108) relative error

(2, 3) 32t2 + 20t+ 1 4.72124 12 357 532 12 362 961.06 0.0439%
(2, 6) 32t2 + 44t+ 13 12 363 849 12 362 960.77 −0.0072%

(4, 7) 128t2 + 104t + 17 3.20688 8 100 174 8 102 333.64 0.0267%
(4, 10) 128t2 + 152t + 41 8 104 531 8 102 333.57 −0.0271%

(5, 4) 200t2 + 70t+ 1 5.62398 14 052 016 14 050 339.22 −0.012%
(5, 9) 200t2 + 170t + 31 14 049 951 14 050 339.05 0.003%
(5, 12) 200t2 + 230t + 61 14 057 558 14 050 338.95 −0.051%
(5, 17) 200t2 + 330t + 131 14 049 868 14 050 338.79 0.003%

(7, 9) 392t2 + 238t + 29 3.82010 9 381 546 9 385 428.26 0.0415%
(7, 13) 392t2 + 350t + 71 9 387 937 9 385 428.21 −0.0267%
(7, 16) 392t2 + 434t + 113 9 385 853 9 385 428.17 −0.0045%
(7, 20) 392t2 + 546t + 183 9 387 135 9 385 428.11 −0.0182%

(8, 15) 512t2 + 464t + 97 3.22754 7 879 429 7 877 750.61 −0.0213%
(8, 18) 512t2 + 560t + 145 7 879 013 7 877 750.57 −0.0160%

(9, 5) 648t2 + 162t+ 1 5.41032 13 129 138 13 129 743.85 0.0046%
(9, 8) 648t2 + 270t + 19 13 127 661 13 129 739.69 0.0158%
(9, 17) 648t2 + 594t + 127 13 129 080 13 129 739.55 0.0050%
(9, 20) 648t2 + 702t + 181 13 130 890 13 129 743.63 −0.0087%
(9, 29) 648t2 + 1026t + 397 13 128 036 13 129 743.50 0.0130%
(9, 32) 648t2 + 1134t + 487 13 128 979 13 129 743.46 0.0058%

extended our computer searches to proper prime power values of some of these polynomials, for
t ≤ x = 107.

As predicted in Section 2, we found very few proper prime power values, in comparison with
the abundance of prime values. The values we found for n ≤ 9 and t ≤ 107 are shown in Table 3.
We observe that there is only one cube: all the other prime powers are squares. The polynomials
fn,r for the following pairs (n, r) with non-triangular parameters n ≤ 9 gave no proper prime power
values for t ≤ 107, so they have been omitted from the table:

(2, 6), (4, 7), (4, 10), (5, 9), (5, 12), (5, 17), (7, 9), (7, 13), (7, 16), (7, 20),

(8, 15), (8, 18), (9, 8), (9, 20), (9, 32).

14. Prime power values of reducible polynomials

A reducible polynomial f(t) = g(t)h(t) ∈ Z[t] can take only finitely many prime values (with
g(t) or h(t) equal to ±1), but could it take infinitely many prime power values? One way it might
do so is if g = h and this polynomial takes infinitely many prime values: Dirichlet’s Theorem shows
that this can happen with deg g = 1, and the Bunyakovsky Conjecture suggests that it can happen
with deg g > 1. More generally, if g is irreducible and takes infinitely many prime values p, then
any power f = ge of g takes infinitely many prime power values pe. But what happens if f has two
or more distinct irreducible factors?

Theorem 14.1. If f is a polynomial in Z[t] with at least two different irreducible factors, then
f(t) is a prime power for only finitely many t ∈ Z.

Proof. We first deal with a simple special case, and with t ≥ 0. Suppose that f = gh for
distinct factors g(t) = akt

k + · · · and h(t) = bkt
k + · · · in Z[t] of the same degree k ≥ 1. If there
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Table 3: Proper prime power values for irreducible polynomials fn,r with n ≤ 9, t ≤ 107

(n, r) polynomial fn,r t ≤ 107 fn,r(t) power

(2, 3) 32t2 + 20t+ 1 2 169 132

8 2 209 472

78 196 249 4432

282 2 550 409 1 5972

9 590 2 943 171 001 54 2512

23 666 17 923 019 113 2 6173

90 372 261 348 955 729 511 2232

3 069 998 301 596 468 440 089 17 366 5332

(5, 4) 200t2 + 70t+ 1 4 3 481 592

2 044 835 730 281 28 9092

4 816 4 639 108 321 68 1112

163 608 5 353 526 985 361 2 313 7692

(9, 5) 648t2 + 162t+ 1 3 220 6 719 244 841 81 9712

(9, 17) 648t2 + 594t + 127 1 1 369 372

49 1 585 081 1 2592

(9, 29) 648t2 + 1026t + 397 2 5 041 712

is some t ∈ N with f(t) = pe for a prime p and integer e ≥ 1 then g(t) = ±pi and h(t) = ±pj for
some integers i, j ≥ 0 with i+ j = e. If i ≥ j then

g(t)

h(t)
= pi−j ∈ Z.

However, for all sufficiently large t ∈ R we have

g(t)

h(t)
=

akt
k + · · ·

bktk + · · ·
→

ak
bk

strictly monotonically as t → +∞,

so if there are infinitely many such t ∈ N with i ≥ j we have a sequence of integers pi−j converging
strictly monotonically to ak/bk, which is impossible. A similar argument, with the factors g and h
transposed, shows that there can be only finitely many such t ∈ N with i < j, so f(t) is a prime
power for only finitely many t ∈ N.

We can now deal with the general case, where f is reducible and not a power of a single irreducible
polynomial. This allows us to factorise f in Z[t] as f = gh where g and h have different irreducible
factors. If deg g 6= deg h we can replace f with

f∗ = g∗h∗ where g∗ = gdeg h and h∗ = hdeg g,

so that f∗ takes prime power values at the same integers t as f does. Since g∗ and h∗ are distinct
but have the same degree, we can apply the preceding argument to show that f∗ takes prime power
values at only finitely many t ∈ N, and hence the same applies to f . Finally, we can extend this result
to all t ∈ Z either directly as above, using the fact that g(t)/h(t) has similar limiting behaviour
when t → −∞, or by applying the above argument for t > 0 to f(−t), which factorises in the same
way as f(t). �

In particular, let f = fn,r in a case where this polynomial is reducible, or equivalently n is a
triangular number a(a + 1)/2 and ∆ is a non-zero square 4n2(8n + 1) = 4n2(2a + 1)2. Then f
factorises in Z[t] as

f(t) = g(t)h(t) =
1

2
(4nt+ r + a)(4nt+ r − a− 1),
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where the first or second displayed linear polynomial has both of its coefficients even as r ≡ a

mod (2) or not, so that it absorbs the factor
1

2
. In either case, the resulting linear factors g and h

of f in Z[t] are distinct and irreducible, so Theorem 14.1 implies that f(t) is a prime power for only
finitely many t ∈ Z.

Proposition 14.2. If fn,r is reducible and n > 1 then fn,r(t) is not a prime power for any
integer t ≥ 1.

Proof. Suppose that f := fn,r is reducible and n > 1, so n = a(a + 1)/2 for some integer
a ≥ 2 by Lemma 8.1, and that f(t) = pe for some prime p and integers e, t ≥ 1.

Case 1. If r ≡ a mod (2) then f = gh where

g(t) = 2nt+
r + a

2
and h(t) = 4nt+ r − a− 1.

Since t ≥ 1 we have g(t), h(t) > 1 so g(t) = pi and h(t) = pj for integers i, j ≥ 1 with i+ j = e. If
i < j then

h(t)

g(t)
= pj−i ≥ p ≥ 2,

giving −a− 1 ≥ a, which is impossible since a ≥ 1. Thus i ≥ j, so g(t) ≥ h(t), leading to

t ≤
3a− r + 2

4n
≤

3a+ 1

2a(a+ 1)
< 1

(since r ≥ 1 and a ≥ 2), against our hypothesis.

Case 2. If r 6≡ a mod (2) then f = gh where

g(t) = 4nt+ r + a and h(t) = 2nt+
r − a− 1

2
.

As before we have g(t) = pi and h(t) = pj for integers i, j ≥ 1. If i ≤ j then g(t) ≤ h(t), leading to

2nt ≤
r − a− 1

2
− (r + a) < 0,

which is impossible. Thus i > j, so
g(t)

h(t)
= pi−j ≥ p.

If pi−j = 2 then g(t) = 2h(t), giving a = −a−1, which is impossible. Hence pi−j ≥ 3, so g(t) ≥ 3h(t),
leading to

t ≤
a− r + 3

4n
≤

a

4n
=

1

2(a+ 1)
< 1,

again contradicting our hypothesis. �

Remark 14.3. Although Theorem 14.1 applies to all t ∈ Z, Proposition 14.2 applies only to
integers t ≥ 0 and cannot be extended to the case t < 0. For example, the polynomial

f(t) = f3,5(t) = 72t2 + 54t+ 7 = (12t+ 7)(6t + 1),

satisfies f(−1) = 52, with g(−1) = h(−1) = −5. Of course, negative values of t are not relevant to
the 2-designs considered in this paper.

The condition n > 1 is required in Proposition 14.2, since the polynomial

f(t) = f1,1(t) = 8t2 + 2t− 1 = (2t+ 1)(4t− 1)

satisfies f(1) = 32. The block designs D considered here all satisfy this condition.
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15. Values at t = 0

Proposition 14.2 leaves open the possibility, which is relevant to 2-designs, that

f(0) = fn,r(0) =
r(r − 1)

2
− n

could be a prime power. Prime values fn,r(0) seem to arise quite frequently when fn,r is irreducible:
for example, of the twenty polynomials in Table 2, sixteen have prime values at t = 0, three have
the value 1, and f8,18 has the value 145. However, the situation is rather different for reducible
polynomials fn,r, those for which n is a triangular number a(a+ 1)/2.

Proposition 15.1. Let fn,r be reducible, and satisfy (8.1) and (8.2). Then fn,r(0) is a prime
power pe, e ≥ 1, if and only if p is odd and one of the following occurs:

(a) e = 2i is even, with n = (pe − 1)/8 > 1, a = (pi − 1)/2 and r = (3pi + 1)/2, or

(b) pe = 7, with n = 3, a = 2 and r = 5 (as in Remark 14.3).

Note that by (a) every even power pe > 9 of an odd prime p can be realised as a value fn,r(0)
of a reducible polynomial fn,r.

Proof of Proposition 15.1. If we put t = 0 in Case (1) of the proof of Proposition 14.2, where
r ≡ a mod (2), we have

r + a

2
= pi and r − a− 1 = pj

for integers i, j ≥ 0 with i+ j = e ≥ 1 and i ≥ j. Solving these simultaneous equations gives

r = pi +
pj + 1

2
and a = pi −

pj + 1

2
,

so that

n =
a(a+ 1)

2
=

1

8

(

(2pi − pj)2 − 1
)

.

(Recall that fn,r is reducible if and only if 8n+1 is a perfect square.) Here we require pj to be odd,
so that r ≡ a mod (2); however, we reject solutions with p = 2 and j = 0 since they give c = 2i and
r(r − 1)/2 6≡ n+ 1 mod (2n), contradicting condition (8.2), so p must be an odd prime.

The condition that r(r − 1)/2 ≡ n + 1 mod (2n) also excludes many solutions when p is odd.
We have

r(r − 1)

2
− n− 1 = pi+j − 1 and 2n =

(2pi − pj)2 − 1

4
,

so if i > j then

0 <
r(r − 1)

2
− n− 1 < 2n

and hence r(r − 1)/2 6≡ n+ 1 mod (2n). However, if we take i = j then

r =
3pi + 1

2
, a =

pi − 1

2
and n =

p2i − 1

8
,

so that r < 4n provided pi > 3, and

r(r − 1)

2
− n− 1 = p2i − 1 = 8n ≡ 0 mod (2n)

as required. Thus every even power pe = p2i > 9 of an odd prime p is the value of some reducible
polynomial fn,r at t = 0, giving conclusion (a).
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A similar argument applies in Case (2) of the proof of Proposition 14.2, where r 6≡ a mod (2).
We now have

r + a = pi and
r − a− 1

2
= pj ,

with i > j, so that

r =
pi + 1

2
+ pj and a =

pi − 1

2
− pj,

giving

n =
a(a+ 1)

2
=

1

8

(

(pi − 2pj)2 − 1
)

.

In this case
r(r − 1)

2
− n− 1 = pi+j − 1 and 2n =

((pi − 2pj)2 − 1

4
.

We need

pi+j − 1 =
r(r − 1)

2
− n− 1 ≥ 2n =

p2i − 1

4
− pi+j + p2j

so that

2pi+j ≥
p2i + 3

4
+ p2j >

p2i

4

and hence pi−j ≤ 8. Since i > j and p ≥ 3 this implies that i− j = 1 and p = 3, 5 or 7. Thus only
odd powers pe of these three primes can arise in Case 2.

Putting i = j + 1 gives

r(r − 1)

2
− n− 1 = p2j+1 − 1 and 2n =

(pj+1 − 2pj)2 − 1

4
=

(p − 2)2p2j − 1

4
.

Now 2n divides
r(r − 1)

2
− n− 1, so multiplying by 4 shows that

8n = (p− 2)2p2j − 1 divides 4
(r(r − 1)

2
− n− 1

)

= 4(p2j+1 − 1).

Defining q := p2j, we see that (p− 2)2q − 1 divides 4(pq − 1). We now apply this with p = 3, 5 and
7 in turn.

If p = 3 then q− 1 divides 12q− 4 = 12(q− 1) + 8, so q− 1 divides 8, giving q = 1 or 9. If q = 1
then j = 0, giving r = 3, a = 0 and n = 0, whereas we need n > 1. If q = 9 then j = 1, giving
r = 8, a = 1 and n = 1, again too small. Thus p 6= 3.

If p = 5 then 9q − 1 divides 20q − 4 = 2(9q − 1) + 2(q − 1) and hence 9q − 1 divides 2(q − 1)
giving q = 1. Then j = 0, so r = 4, a = 1 and n = 1, whereas we need n > 1. Thus p 6= 5.

If p = 7 then 25q − 1 divides 28q − 4 = 25q − 1 + 3(q − 1) and hence 25q − 1 divides 3(q − 1)
giving q = 1. Then j = 0, so r = 5, a = 2 and n = 3, with r < 4n and r(r − 1)/2 − n − 1 = 6 ≡ 0
mod (2n); this gives the polynomial

f(t) = f3,5(t) = 72t2 + 54t+ 7 = (12t+ 7)(6t + 1)

in conclusion (b), with f(0) = 7. �

Example 15.2. One can realise 52 as a value by taking n = 3, a = 2 and r = 8. This gives

f(t) = f3,8(t) = 72t2 + 90t+ 25 = (6t+ 5)(12t + 5)

with f(0) = 52. Similarly, one can realise 72 by taking n = 6, a = 3 and r = 11, so that

f(t) = f6,11(t) = 288t2 + 252t + 49 = (12t+ 7)(24t + 7)

with f(0) = 72. Taking n = (134 − 1)/8 = 3570 and r = (3 · 132 + 1)/2 = 254 we get

f(t) = fn,r(t) = 101 959 200 t2 + 3619 980 t + 28561 = (7 140t + 169)(14 280t + 169)

with f(0) = 28 561 = 134. �
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16. Intersection density of permutation groups

We now consider our second application. Permutations g and h of a set V are said to intersect
if g(v) = h(v) for some v ∈ V . The motivation for this is that if we define the graph of g (regarded
as a function V → V ) to be the subset {(v, g(v)) | v ∈ V } of V 2, then g and h intersect if and only
if their graphs intersect. Thus intersecting families of permutations are special cases of intersecting
families of sets.

Let G be a transitive permutation group of degree n, acting on a set V . A subset F ⊆ G is an
intersecting set if each pair of elements of F intersect. For example, each coset gGv (v ∈ V ) of a
point-stabiliser Gv is an intersecting set.

The intersection density of F is

ρ(F) =
|F|

|Gv |
,

and the intersection density of G is
ρ(G) = max

F
ρ(F),

where F ranges over all intersecting sets in G. By taking F = Gv we see that ρ(G) ≥ 1. By
analogy with the Erdős–Ko–Rado Theorem [17], which gives an upper bound

(

n−1
k−1

)

for the number
of intersecting k-element subsets in an n-element set, we say that G has the (strict) Erdős–Ko–
Rado (or EKR) property if ρ(G) = 1 (and if this upper bound is attained only by cosets of point-
stabilisers). Thus ρ(G) measures the extent to which G fails to have the EKR property.

In [29], Meagher et al. define
I(n) := max

G
{ρ(G)},

where G ranges over all transitive permutation groups of degree n. Their Conjecture 6.6 proposes
a value for I(n) for various integers n, including all those with at most two distinct prime factors.
Some cases of that conjecture have already been proved. In case (iii) it is conjectured that I(n) = 1
if n = pq for odd primes p > q. Hujdurović et al. in [21] prove this if G is imprimitive with q blocks
of size p, but they construct counterexamples where G has p blocks of size q. These are constructed
as follows from projective primes, which are defined in [25] as primes equal to the natural degree
(qk − 1)/(q − 1) of PSLk(q) for some prime power q.

Given a projective prime p = (qk − 1)/(q − 1) where q is an odd prime, let n = pq, define
V = Zq × Zp, and define a permutation

α : (i, j) 7→ (i, j + 1) (i ∈ Zq, j ∈ Zp)

of V , a generator of G of order p. For the remaining generators, one needs a cyclic code C of length
p and dimension k over the field Fq, that is, a k-dimensional linear subspace of the p-dimensional
vector space Fp

q which is invariant under the cyclic permutation j 7→ j+1 mod (p) of the coordinates.
The permutations

βc : (i, j) 7→ (i+ cj, j)

of V for each c = (c0, . . . , cp−1) ∈ C form a group K isomorphic to the additive group of C, with
p orbits {(i, j) | i ∈ Zq} for j ∈ Zp. The group G generated by α and K, a semidirect product
K ⋊ 〈α〉, is transitive but imprimitive on V , with the orbits of K forming p blocks of size q.

The required code C is constructed as the ideal of the ring Fq[x]/(x
p − 1) annihilated by some

monic irreducible factor h(x) of the cyclotomic polynomial Φp(x) over Fq, so that dimC = deg h = k.
A standard result in coding theory [28, Equation 2.10] shows that since

qk − 1

q − 1
=

p

gcd(p, q − 1)
(both = p),

all codewords c 6= 0 have the same Hamming weight (number of non-zero coordinates), which is less
than p. Thus each c ∈ C has at least one coordinate cj = 0, so every element of K has a fixed point
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v ∈ V , and hence K is an intersecting set. Since |G : K| = p and |G : Gv | = pq we have ρ(K) = q,
so I(n) ≥ ρ(G) ≥ q > 1, giving the required counterexample to case (iii) of the conjecture in [29].
(In fact, it is shown in [21] that I(n) = ρ(G) = q for such values of n.)

It remains to consider the number and distribution of such projective primes

p =
qk − 1

q − 1
= qk−1 + qk−2 + · · · + 1,

where q is prime. (For convenience we will include the case q = 2, with p = 2k − 1 a Mersenne
prime, even though it is not relevant to the construction in [21].) One can do this by applying the
BHC to the polynomials f1(t) = t and f2(t) = tk−1+ tk−2+ · · ·+1. An obvious necessary condition
for the irreducibility of f2 is that k should be prime; in this case f2 is the cyclotomic polynomial
Φk, and hence is indeed irreducible. The other Bunyakovsky conditions are obviously satisfied by f1
and f2 for each odd prime k, so if the BHC is correct then for each such k there are infinitely many
primes q such that p is prime, giving infinitely many counterexamples G to Conjecture 6.6(iii). (As
we have shown in [25], this would fill a gap in the classification of permutation groups of prime
degree by showing that for each prime k ≥ 3 the group PSLk(q), in its natural representation of
degree (qk − 1)/(q − 1), has prime degree for infinitely many prime powers q.)

In fact, the BHC gives an estimate

E(x) = Ck

x
∫

2

dt

ln t · ln f2(t)

for the number Q(x) of such primes q ≤ x, where Ck = C(f). Now for each prime r the roots of
f = f1f2 mod (r) are 0 and, if k divides r− 1, the k− 1 primitive kth roots of 1 in Zr, so ωf (r) = k
or 1 as r ≡ 1 mod (k) or not. This enables Ck to be calculated for each odd prime k.

As an example, for k = 3 we found 1 974 010 projective primes with prime q ≤ 109, compared
with a BHC estimate of 1 973 907.86 (see [25] for details). The smallest permutation group G in the
corresponding family of counterexamples in [21] has degree 39, with q = 3 and p = 13, although
an even smaller counterexample of degree 33, which does not arise from this construction, is also
described there.

Conclusions

In the case of block designs we have found large numbers of prime values for many of those
polynomials fn,r appearing in [2], each giving rise to a block design with specified parameters and
symmetry properties. In the case of permutation groups we have found a large number of projective
primes with k = 3, providing counterexamples in [21] to Conjecture 6.6(iii) of [29]. In all cases
the numbers found agree closely with the estimates for them provided by Li’s recent version of
the Bateman–Horn Conjecture. While this does not prove the conjectures that these polynomials
take infinitely many prime values, and thus give infinite families of block designs and permutation
groups, it provides strong evidence for this. Moreover, the accuracy of these estimates suggests that
the same applies to those other polynomials fn,r and odd primes k for which we did not obtain
computational evidence. Finally, we suggest that these investigations also provide extra support for
the validity of the Bunyakovsky and Bateman–Horn Conjectures.
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