ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2022, Vol. 319, Suppl. 1, pp. S229–S241. © Pleiades Publishing, Ltd., 2022. Russian Text © The Author(s), 2022, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Vol. 28, No. 4, pp. 237–249.

On Yu. N. Subbotin's Circle of Ideas in the Problem of Local Extremal Interpolation on the Semiaxis

V. T. Shevaldin¹

Received February 17, 2022; revised August 19, 2022; accepted August 22, 2022

Abstract—Subbotin's problem of extremal functional interpolation of numerical sequences $\{y_k\}_{k=0}^{\infty}$ such that their first terms $y_0, y_1, \ldots, y_{s-1}$ are given and the *n*th-order divided differences are bounded is considered on an arbitrary grid $\Delta = \{x_k\}_{k=0}^{\infty}$ of the semiaxis $[x_0; +\infty)$. It is required to find an *n*-times differentiable function f with the smallest norm of the *n*th-order derivative in the space L_{∞} such that $f(x_k) = y_k$ ($k \in \mathbb{Z}_+$). Subbotin formulated and studied this problem only for a uniform grid on the semiaxis $[0; +\infty)$. We prove the finiteness of the smallest norm for $s \ge n$ if the smallest step of the interpolation grid $\underline{h} = \inf_k (x_{k+1} - x_k)$ is bounded away from zero and the largest step $\overline{h} = \sup_k (h_{k+1} - h_k)$ is bounded away from infinity. In the case of the second derivative (i.e., for n = 2), the required value is calculated exactly for s = 2 and is estimated from above for $s \ge 3$ in terms of the grid steps. Keywords: local interpolation, semiaxis, arbitrary grid, divided differences.

DOI: 10.1134/S0081543822060207

¹Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia

e-mail: Valerii.Shevaldin@imm.uran.ru