published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2022, Vol. 28, No. 4, pp. 177–190.

Uniform with Respect to the Parameter $a \in (0, 1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1/k^a$ by the First Terms of Their Asymptotics

A. Yu. Popov^{1,2,*} and T. V. Rodionov^{1,2,**}

Received May 19, 2022; revised July 29, 2022; accepted August 4, 2022

Abstract—Uniform with respect to the parameter $a \in (0, 1)$ estimates of the functions $f_a(x) = \sum_{k=1}^{\infty} k^{-a} \cos kx$ and $g_a(x) = \sum_{k=1}^{\infty} k^{-a} \sin kx$ by the first terms of their asymptotic expansions $F_a(x) = \sin(\pi a/2)\Gamma(1-a)x^{a-1}$ and $G_a(x) = \cos(\pi a/2)\Gamma(1-a)x^{a-1}$ are obtained. Namely, it is proved that the inequalities

$$G_a(x) - \frac{x}{2} < g_a(x) < G_a(x) - \frac{x}{12},$$

$$F_a(x) + \zeta(a) + \frac{\zeta(3)}{4\pi^3} x^2 \sin(\pi a/2) < f_a(x) < F_a(x) + \zeta(a) + \frac{1}{18} x^2 \sin(\pi a/2)$$

are valid for all $a \in (0, 1)$ and $x \in (0, \pi]$.

It is shown that the estimates are unimprovable in the following sense. In the lower estimate for the sine series, the subtrahend x/2 cannot be replaced by kx with any k < 1/2: the estimate ceases to be fulfilled for sufficiently small x and the values of a close to 1. In the upper estimate, the subtrahend x/12 cannot be replaced by kx with any k > 1/12: the estimate ceases to be fulfilled for the values of a and x close to 0. In the lower estimate for the cosine series, the multiplier $\zeta(3)/(4\pi^3)$ of $x^2 \sin(\pi a/2)$ cannot be replaced by any larger number: the estimate ceases to be fulfilled for x and a close to 0. In the upper estimate for the cosine series, the multiplier 1/18 of $x^2 \sin(\pi a/2)$ can probably be replaced by a smaller number but not by 1/24: for every $a \in [0.98, 1)$, such an estimate would not hold at the point $x = \pi$ as well as on a certain closed interval $x_0(a) \le x \le \pi$, where $x_0(a) \to 0$ as $a \to 1-$. The obtained results allow us to refine the estimates for the functions f_a and g_a established recently by other authors. **Keywords:** special trigonometric series, polylogarithm, periodic zeta function.

DOI: 10.1134/S0081543822060189

¹Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia

²Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991 Russia e-mail: *station@list.ru, **rodionovtv@mail.ru