Uniform with Respect to the Parameter $a \in(0,1)$ Two-Sided Estimates of the Sums of Sine and Cosine Series with Coefficients $1 / k^{a}$ by the First Terms of Their Asymptotics

A. Yu. Popov ${ }^{1,2, *}$ and T. V. Rodionov ${ }^{1,2, * *}$
Received May 19, 2022; revised July 29, 2022; accepted August 4, 2022

$$
\begin{aligned}
& \text { Abstract—Uniform with respect to the parameter } a \in(0,1) \text { estimates of the functions } f_{a}(x)= \\
& \sum_{k=1}^{\infty} k^{-a} \cos k x \text { and } g_{a}(x)=\sum_{k=1}^{\infty} k^{-a} \sin k x \text { by the first terms of their asymptotic expansions } \\
& F_{a}(x)=\sin (\pi a / 2) \Gamma(1-a) x^{a-1} \text { and } G_{a}(x)=\cos (\pi a / 2) \Gamma(1-a) x^{a-1} \text { are obtained. Namely, it } \\
& \text { is proved that the inequalities } \\
& \qquad G_{a}(x)-\frac{x}{2}<g_{a}(x)<G_{a}(x)-\frac{x}{12}, \\
& \qquad F_{a}(x)+\zeta(a)+\frac{\zeta(3)}{4 \pi^{3}} x^{2} \sin (\pi a / 2)<f_{a}(x)<F_{a}(x)+\zeta(a)+\frac{1}{18} x^{2} \sin (\pi a / 2)
\end{aligned}
$$

are valid for all $a \in(0,1)$ and $x \in(0, \pi]$.
It is shown that the estimates are unimprovable in the following sense. In the lower estimate for the sine series, the subtrahend $x / 2$ cannot be replaced by $k x$ with any $k<1 / 2$: the estimate ceases to be fulfilled for sufficiently small x and the values of a close to 1 . In the upper estimate, the subtrahend $x / 12$ cannot be replaced by $k x$ with any $k>1 / 12$: the estimate ceases to be fulfilled for the values of a and x close to 0 . In the lower estimate for the cosine series, the multiplier $\zeta(3) /\left(4 \pi^{3}\right)$ of $x^{2} \sin (\pi a / 2)$ cannot be replaced by any larger number: the estimate ceases to be fulfilled for x and a close to 0 . In the upper estimate for the cosine series, the multiplier $1 / 18$ of $x^{2} \sin (\pi a / 2)$ can probably be replaced by a smaller number but not by $1 / 24$: for every $a \in[0.98,1)$, such an estimate would not hold at the point $x=\pi$ as well as on a certain closed interval $x_{0}(a) \leq x \leq \pi$, where $x_{0}(a) \rightarrow 0$ as $a \rightarrow 1-$. The obtained results allow us to refine the estimates for the functions f_{a} and g_{a} established recently by other authors.
Keywords: special trigonometric series, polylogarithm, periodic zeta function.
DOI: 10.1134/S0081543822060189

[^0]
[^0]: ${ }^{1}$ Faculty of Mechanics and Mathematics, Moscow State University, Moscow, 119991 Russia
 ${ }^{2}$ Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991 Russia
 e-mail: *station@list.ru, ${ }^{* *}$ rodionovtv@mail.ru

