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ON THE PROPERTIES OF THE SET OF TRAJECTORIES

OF NONLINEAR CONTROL SYSTEMS

WITH INTEGRAL CONSTRAINTS ON THE CONTROL FUNCTIONS

N.Huseyin, A.Huseyin, Kh. G.Guseinov

The control systems described by nonlinear differential equations and integral constraints on the control

functions are studied. Admissible control functions are chosen from a closed ball of the space Lp, p ∈ (1,∞],
with radius r and centered at the origin. It is proved that the set of trajectories of the system is continuous

at p = ∞ with respect to the Hausdorff pseudometric. It is shown that every trajectory is robust with respect

to the fast and full consumption of the remaining control resource which implies that to achieve the desired

result, it is advisable to spend the available control resource in small portions. This allows to prove that every

trajectory can be approximated by the trajectory, generated by full consumption of the control resource.

Keywords: nonlinear control system, set of trajectories, integral constraint, geometric constraint, Hausdorff

continuity, robustness.

Н. Гусейин, А. Гусейин, Х. Г. Гусейнов. О свойствах множества траекторий нелинейной

управляемой системы с интегральными ограничениями на управляющие функции.

Исследуются управляемые системы, описываемые нелинейными дифференциальными уравнениями с

интегральными ограничениями на управляющие функции. Допустимые управляющие функции выбира-

ются из замкнутого шара пространства Lp, p ∈ (1,∞], радиуса r с центром в начале координат. Доказано,

что множество траекторий системы непрерывно при p = ∞ в псевдометрике Хаусдорфа. Показано, что

каждая траектория робастна по отношению к быстрому и полному расходованию оставшегося управля-

ющего ресурса, из чего следует, что для достижения желаемого результата целесообразно расходовать

имеющийся ресурс управления малыми порциями. Благодаря этому удается доказать, что каждая тра-

ектория может быть аппроксимирована траекторией, соответствующей полному расходованию ресурса

управления.
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Introduction

The nonlinear control systems described by ordinary differential equations arise in different areas
of the theory and applications. One of the important notions of control systems theory is the set
of system’s trajectories which consists of trajectories generated by all admissible control functions.
The set of trajectories includes comprehensive information about system’s behaviour and can be
used for solution of various type of problems arising in the theory of control systems. For example,
the attainable set at a given time defined in the phase-state space and consisting of points to which
the system’s trajectories arrive at a given time, can be defined as the section of the set of trajectories
at that given time. The integral funnel of the system is defined in the extended phase-state space
and consists of the graphs of all trajectories. Let us emphasize that the attainable sets and integral
funnel are also the adequate tools for visualization of the system’s behaviour.

Depending on the character of the control efforts, the control systems are characterised as follows:
control systems with geometric constraints on the control functions; control systems with integral
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constraints on the control functions; and control systems with mixed constraints on the control
functions which include both the geometric and the integral constraints on the control functions.
Geometric constraints characterize the control efforts which are not exhausted by consumption. The
control system with geometric constraints on the control functions is a well investigated chapter of
the theory of control systems (see, e.g. [1–6]). These systems are also studied in the framework of
differential inclusions theory and positional differential games theory (see, e.g. [7–11]).

If the control resource is exhausted by consumption, say as energy, fuel, finance, food, etc., then
integral constraint on the control functions is inevitable. Note that integral boundedness of the
control functions does not guarantee their geometric boundedness and therefore in the study of the
control systems with integral constraints on the control functions arise the additional and essential
difficulties. Different topological properties and approximation methods for construction of the set
of trajectories, attainable sets and integral funnels of control systems described by different types of
integral and differential equations and integral constraints on the control functions are considered
in papers [12–22] (also see references therein).

In this paper, the set of trajectories of a control system described by a nonlinear ordinary
differential equation is studied. The admissible control functions are chosen from a closed ball of the
space Lp, p ∈ (1,∞], centered at the origin with radius r. Dependence of the set of trajectories on p

at p = ∞ is studied. In paper [13] it is proved that the set of trajectories depends on p continuously
if p ∈ (1,∞). Note that the aforementioned result can be obtained as a corollary of the main result
of the paper [19] where in the general case the continuity of the Lp balls with respect to p on
the open interval (1,∞) is proved. In the presented paper, the Hausdorff continuity of the set of
trajectories of the control system at p = ∞ is established. Since the L∞ boundedness is a geometric
type constraint, the obtained result asserts that for sufficiently large p, the integral boundedness
can be replaced by the geometric one, and vice versa, the norm type geometric boundedness can
be replaced by integral constraint with sufficiently large p. For given ε > 0 the lower bound for
parameter p guaranteeing the ε-closeness between the sets of trajectories generated by integrally
constrained and geometrically constrained control functions is determined.

Another problem discussed in the paper is the robustness of the trajectories with respect to the
remaining control resource which is essential for the consumption mode of the control resource in the
control process. It is shown that the spending of the control resource with big quants on the domains
with sufficiently small Lebesgue measures does not cause significant changes in the trajectories of
the system. The similar problem is considered in [18] where the dynamics of the control system is
described by Urysohn type integral equation.

The paper is organised as follows: In Section 1, we formulate basic conditions imposed on the
equation of the system and used in the subsequent analysis. In Section 2 the Hausdorff continuity
of the set of trajectories at p = ∞ is established (Theorem 1). The lower bound for parameter
p guaranteeing ε-closeness between the set of trajectories generated by integrally constrained and
geometrically constrained control functions is determined (the equalities (2.7), (2.13) and (2.22)). In
Section 3 the robustness of the trajectories, generated by integrally constrained control functions,
with respect to the remaining control resource is discussed. Applying this result, we show that every
trajectory of the system can be approximated by the trajectory generated by fill consumption of
the control resource (Theorem 2) and thus, it is obtained that the Hausdorff distance between the
set of system’s trajectories and the set of trajectories generated by full consumption of the control
resources is zero (Theorem 3).

1. The System’s Description

The nonlinear control system described by the differential equation

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 (1.1)
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is considered where x ∈ R
n is the phase-state vector, u ∈ R

m is the control vector, t ∈ [t0, θ] is the
time, T = θ− t0. It is assumed that the function f(·) : [t0, θ]×R

n×R
m → R

n satisfies the following
conditions.

A. The function f(·) : [t0, θ]× R
n × R

m → R
n is continuous.

B. For every bounded set D ⊂ [t0, θ] × R
n there exist γ1 = γ1(D) > 0, γ2 = γ2(D) > 0 and

γ3 = γ3(D) such that the inequality

‖f(t, x1, u1)− f(t, x2, u2)‖ ≤ [γ1 + γ2(‖u1‖+ ‖u2‖)] ‖x1 − x2‖+ γ3‖u1 − u2‖

is satisfied for every (t, x1, u1) ∈ D ×R
m and (t, x2, u2) ∈ D × R

m.

C. There exists c > 0 such that the inequality

‖f(t, x, u)‖ ≤ c (‖x‖+ 1) (‖u‖+ 1)

is held for every (t, x, u) ∈ [t0, θ]×R
n × R

m.

If the function (t, x, u) → f(t, x, u) : [t0, θ]×R
n×R

m → R
n is Lipschitz continuous with respect

to (x, u), then the conditions B and C are satisfied.

For given p ∈ [1,∞] and r > 0 we denote

Up,r =
{

u(·) ∈ Lp

(

[t0, θ];R
m
)

: ‖u(·)‖p ≤ r
}

where Lp ([t0, θ];R
m) is the space of Lebesgue measurable functions u(·) : [t0, θ] → R

m such that

‖u(·)‖p < ∞. Here ‖u(·)‖p =

(
∫ θ

t0

‖u(t)‖pdt

)1/p

if p ∈ [1,∞) and ‖u(·)‖∞ = inf{ρ > 0 : ‖u(t)‖ ≤ ρ

for almost all t ∈ [t0, θ]}, ‖·‖ denotes the Euclidean norm.

Up,r is called the set of admissible control functions and every u(·) ∈ Up,r is said to be an
admissible control function.

Let u∗(·) ∈ Up,r. An absolutely continuous function x∗(·) : [t0, θ] → R
n satisfying the equation

ẋ∗(t) = f (t, x∗ (t) , u∗(t)) for almost all t ∈ [t0, θ] and initial condition x∗(t0) = x0 is said to be a
trajectory of the system (1.1) generated by the admissible control function u∗(·) ∈ Up,r . The set of
trajectories of the system (1.1) generated by all admissible control functions u(·) ∈ Up,r is denoted
by Xp,r(t0, x0) and is called briefly the set of trajectories of the system (1.1). For given t ∈ [t0, θ]
we set

Xp,r(t; t0, x0) =
{

x(t) ∈ R
n : x(·) ∈ Xp,r(t0, x0)

}

. (1.2)

The set Xp,r(t; t0, x0) is said to be the attainable set of the system (1.1) at the time t.

Note that conditions A–C guarantee the existence, uniqueness and extendability of the solutions
up to the time θ for every given u(·) ∈ Up,r and p ∈ [1,∞]. Moreover, it is possible to verify that
conditions A–C guarantee that the set of trajectories Xp,r(t0, x0) is a nonempty bounded and path-
connected subset of the space C ([t0, θ];R

n) for every p ∈ [1,∞] and is a precompact subset of
the space C ([t0, θ];R

n) for every p ∈ (1,∞] where the symbol C ([t0, θ];R
n) denotes the space of

continuous functions x(·) : [t0, θ] → R
n with norm ‖x(·)‖C = max {‖x(t)‖ : t ∈ [t0, θ]}. In general,

the set of trajectories Xp,r(t0, x0) is not a closed set (see, e.g. [7; 16]).

From conditions A–C it also follows that there exists γ∗ > 0 such that ‖x(·)‖C ≤ γ∗ for
every x(·) ∈ Xp,r(t0, x0) and p ∈ [1,∞]. Here and henceforth we will have in mind the cylinder
Dn(γ∗) = {(t, x) ∈ [t0, θ]× R

n : ‖x‖ ≤ γ∗} as the set D in Condition B.

The Hausdorff distance between the bounded sets Ω ⊂ C ([t0, θ];R
n) and W ⊂ C ([t0, θ];R

n) is
denoted by symbol hC(Ω,W ). Denote

BC(1) =
{

x(·) ∈ C ([t0, θ];R
n) : ‖x(·)‖C ≤ 1

}

. (1.3)
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2. Continuity of the Set of Trajectories at p = ∞

In Theorem 4.2 of the paper [13] it is proved that the set valued map p → Xp,r(t0, x0), p ∈ (1,∞),
is Hausdorff continuous for every fixed r ∈ (0,∞). Note that this theorem can be obtained as
corollary of the Theorem 3 of the paper [19] where Hausdorff continuity of the Lp balls is shown.
In following, the Hausdorff continuity of the set valued map p → Xp,r(t0, x0), p ∈ (1,∞], at p = ∞
is proved. Denote

β∗ =

{

min {1, r, r|T − 1|} if T 6= 1 ,
1 if T = 1,

(2.1)

T∗ = max{1, T} , (2.2)

κ∗ = γ3 · exp [γ1T + 2γ2rT∗] . (2.3)

It is obvious that
T (p−1)/p ≤ T∗ (2.4)

for every p ∈ (1,∞).
At first let us prove that set valued map p → Xp,r(t0, x0), p ∈ (1,∞], is lower semicontinuous

at p = ∞.

Proposition 1. For every ε ∈ (0, β∗) there exists P1(ε) ≥ 1 such that for each p > P1(ε) the

inclusion

X∞,r(t0, x0) ⊂ Xp,r(t0, x0) + εκ∗BC(1)

is satisfied where BC(1) is defined by (1.3).

Proof. Let us choose an arbitrary trajectory x(·) ∈ X∞,r(t0, x0) generated by the control
function u(·) ∈ U∞,r and define new function up(·) : [t0, θ] → R

m, setting

up(t) = T−1/p u(t) , t ∈ [t0, θ] . (2.5)

where p > 1, T = θ − t0.
Since u(·) ∈ U∞,r, then it is not difficult to verify that ‖up(·)‖p ≤ r for every p > 1 which

yields that up(·) ∈ Up,r. Let the function xp(·) : [t0, θ] → R
n be the trajectory of the system (1.1)

generated by the control function up(·) ∈ Up,r. Then, xp(·) ∈ Xp,r(t0, x0).
From inclusion u(·) ∈ U∞,r and (2.5) it follows that

‖u(·) − up(·)‖1 =

θ
∫

t0

∥

∥u(τ)− T−1/p · u(τ)
∥

∥ dτ ≤ rT ·
∣

∣1− T−1/p
∣

∣ . (2.6)

Let us set

P1(ε) =































1

logT
rT

rT−ε

if T > 1 ,

1

logT
rT

rT+ε

if T < 1 ,

1 if T = 1 .

(2.7)

If T = 1, then from (2.5) it follows that up(t) = u(t) for every t ∈ [t0, θ] and p > 1, which yields
that

‖up(·)− u(·)‖1 = 0 < ε (2.8)

for every p > P1(ε) where P1(ε) = 1.
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Let T > 1. Since ε < β∗, then on behalf of (2.1) we have that ε < r(T − 1), and hence

0 < logT
rT

rT − ε
< 1 .

The last inequality and (2.7) yield that P1(ε) > 1 in the case T > 1.

Let us choose an arbitrary p > P1(ε). According to (2.7) we have

p >
1

logT
rT

rT−ε

,

and consequently

rT ·
(

1− T−1/p
)

< ε .

From the last inequality and (2.6) it follows that

‖u(·) − up(·)‖1 < ε (2.9)

where T > 1, p > P1(ε), u(·) ∈ U∞,r is arbitrarily chosen, up(·) ∈ Up,r is definded by (2.5).

Now assume that T < 1. Since ε < β∗, then on behalf of (2.1) we have that ε < r(1 − T ), and
hence

0 < logT
rT

rT + ε
< 1 .

From the last inequality and (2.7) it follows that P1(ε) > 1 in the case T < 1.

Choose an arbitrary p > P1(ε). Since T < 1 then from (2.7) we have

p >
1

logT
rT

rT+ε

,

and consequently

rT ·
(

T−1/p − 1
)

< ε .

The last inequality and (2.6) imply that

‖u(·) − up(·)‖1 < ε (2.10)

where T < 1, p > P1(ε), u(·) ∈ U∞,r is arbitrarily chosen, up(·) ∈ Up,r is defined by (2.5).

Thus, from the inequalities (2.8), (2.9) and (2.10) it follows that the inequality

‖u(·) − up(·)‖1 < ε (2.11)

is satisfied for every p > P1(ε) where u(·) ∈ U∞,r is arbitrarily chosen, the function up(·) ∈ Up,r is
defined by (2.5).

Now from condition B and (2.11) it follows that

‖x(t)− xp(t)‖ ≤

t
∫

t0

[γ1 + γ2(‖u(τ)‖ + ‖up(τ)‖)] ‖x(τ)− xp(τ)‖ dτ + γ3

t
∫

t0

‖u(τ)− up(τ)‖ dτ

≤

t
∫

t0

[γ1 + γ2(‖u(τ)‖ + ‖up(τ)‖)] ‖x(τ)− xp(τ)‖ dτ + γ3ε (2.12)

for every t ∈ [t0, θ] and p > P1(ε).
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Taking into consideration (2.2), (2.3), (2.4) and (2.12), the inclusions u(·) ∈ U∞,r, up(·) ∈ Up,r,

and applying Gronwall-Bellman inequality and Hölder inequality, we obtain

‖x(t)− xp(t)‖ ≤ γ3ε · exp

[

θ
∫

t0

[γ1 + γ2(‖u(τ)‖ + ‖up(τ)‖)] dτ

]

≤ γ3ε · exp
[

γ1T + γ2rT + γ2rT
(p−1)/p

]

≤ γ3ε · exp
[

γ1T + γ2rT∗ + γ2rT∗

]

= γ3ε · exp [γ1T + 2γ2rT∗] = κ∗ε

for every t ∈ [t0, θ], and hence
‖x(·)− xp(·)‖C ≤ κ∗ε .

Since p > P1(ε), x(·) ∈ X∞,r(t0, x0) are arbitrarily chosen, xp(·) ∈ Xp,r(t0, x0), then the last
inequality implies the proof of the proposition. �

The next proposition characterizes upper semicontinuty of the set valued map p → Xp,r(t0, x0),
p ∈ (1,∞], at p = ∞.

Proposition 2. For every ε ∈ (0, β∗) there exists P2(ε) ≥ 1 such that for each p > P2(ε) the

inclusion

Xp,r(t0, x0) ⊂ X∞,r(t0, x0) + εκ∗BC(1)

is satisfied where BC(1) is defined by (1.3).

Proof. For given ε > 0 let us set

P2(ε) = 1 + log( r
r+ ε

2(1+T )

)

ε

2r(1 + T )
. (2.13)

The inequality ε < β∗ yields that ε < min{1, r}. So, from (2.13) we obtain that P2(ε) > 1.
Choose an arbitrary p > P2(ε) and trajectory z(·) ∈ Xp,r(t0, x0) of the system (1.1) generated by
the control function w(·) ∈ Up,r. Define a function w∗(·) : [t0, θ] → R

m, setting

w∗(t) =











w(t) if ‖w(t)‖ ≤ r +
ε

2(1 + T )
,

(

r +
ε

2(1 + T )

) w(t)

‖w(t)‖
if ‖w(t)‖ > r +

ε

2(1 + T )
.

(2.14)

It is obvious that w∗(·) ∈ U∞,r+ ε
2(1+T )

. Denote

G∗ =
{

t ∈ [t0, θ] : ‖w(t)‖ > r +
ε

2(1 + T )

}

.

Since w(·) ∈ Up,r, then Tchebyshev’s inequality (see, [23, p.82]) yields that

µ(G∗) ≤
rp

(

r + ε
2(1+T )

)p (2.15)

where µ(G∗) stands for the Lebesgue measure of the set G∗.
From (2.14), (2.15) and Hölder’s inequality it follows that

‖w(·) − w∗(·)‖1 =

∫

G∗

‖w(τ)‖ ·
∣

∣

∣
1−

r + ε
2(1+T )

‖w(τ)‖

∣

∣

∣
dτ ≤

∫

G∗

‖w(τ)‖ dτ

≤ [µ(G∗)]
(p−1)/p

(
∫

G∗

‖w(s)‖p dτ

)1/p

≤ r

(

r

r + ε
2(1+T )

)p−1

. (2.16)
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Since p > P2(ε), then from (2.13) we have

p > 1 + log( r
r+ ε

2(1+T )

)

ε

2r(1 + T )
,

and hence

r

(

r

r + ε
2(1+T )

)p−1

<
ε

2(1 + T )
.

From the last inequality and (2.16) we obtain that

‖w(·) −w∗(·)‖1 ≤
ε

2(1 + T )
≤

ε

2
(2.17)

where w∗(·) ∈ U∞,r+ ε
2(1+T )

. Since w∗(·) ∈ U∞,r+ ε
2(1+T )

, then there exists w0(·) ∈ U∞,r such that

‖w∗(·)− w0(·)‖∞ ≤
ε

2(1 + T )
,

and hence
‖w∗(·) −w0(·)‖1 ≤ T

ε

2(1 + T )
≤

ε

2
. (2.18)

Inequalities (2.17) and (2.18) imply that

‖w(·) − w0(·)‖1 ≤ ‖w(·) − w∗(·)‖1 + ‖w∗(·)− w0(·)‖1 ≤
ε

2
+

ε

2
= ε (2.19)

where w0(·) ∈ U∞,r. Let the function z0(·) : [t0, θ] → R
n be the trajectory of the system (1.1)

generated by the control function w0(·) ∈ U∞,r. Then z0(·) ∈ X∞,r(t0, x0). From Condition B and
(2.19) we have

‖z(t)− z0(t)‖ ≤

t
∫

t0

[γ1 + γ2(‖w(τ)‖ + ‖w0(τ)‖)] ‖z(τ) − z0(τ)‖ dτ + γ3ε (2.20)

for every t ∈ [t0, θ]. Taking into consideration (2.2)–(2.4), the inclusions w(·) ∈ Up,r, w0(·) ∈ U∞,r

and applying Gronwall–Bellman and Hölder’s inequlities, from (2.20) we obtain

‖z(t)− z0(t)‖ ≤ γ3ε · exp

[

θ
∫

t0

[γ1 + γ2(‖w(τ)‖ + ‖w0(τ)‖)] dτ

]

≤ γ3ε · exp [γ1T + γ2rT∗ + γ2rT∗] = γ3ε · exp [γ1T + 2γ2rT∗] = κ∗ε

for every t ∈ [t0, θ] and hence
‖z(·) − z0(·)‖C ≤ κ∗ε. (2.21)

Since p > P2(ε), z(·) ∈ Xp,r(t0, x0) are arbitrarily chosen, z0(·) ∈ X∞,r(t0, x0), then the
inequality (2.21) completes the proof of the proposition.

From Proposition 1 and Proposition 2 it follows the validity of the following theorem. Let

P∗(ε) = max{P1(ε), P2(ε))} (2.22)

where P1(ε) and P2(ε) are defined in Proposition 1 and Proposition 2 respectively.

Theorem 1. For every ε ∈ (0, β∗) and p > P∗(ε) the inequality

hC(Xp,r(t0, x0),X∞,r(t0, x0) ≤ κ∗ε

is verified where κ∗ > 0 is defined by (2.3), P∗(ε) is defined by (2.22).
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Theorem 1 implies the validity of the following corollaries.

Corollary 1. For every ε ∈ (0, β∗) and p > P∗(ε) the inequality

hC(Xp,r(t; t0, x0),X∞,r(t; t0, x0) ≤ κ∗ε

is verified for each t ∈ [t0, θ] where the set Xp,r(t; t0, x0) is defined by (1.2).

Corollary 2. The set valued map p → Xp,r(t0, x0), p ∈ (1,∞], is Hausdorff continuous at

p = ∞ for every fixed r ∈ (0,∞), i.e. hC(Xp,r(t0, x0),X∞,r(t0, x0)) → 0 as p → ∞ for every fixed

r ∈ (0,∞).

Corollary 3. The set valued map p → Xp,r(t; t0, x0), p ∈ (1,∞], is Hausdorff continuous at

p = ∞ uniformly with respect to t ∈ [t0, θ] for every fixed r ∈ (0,∞), i.e.

hC(Xp,r(t; t0, x0),X∞,r(t; t0, x0)) → 0

as p → ∞ uniformly with respect to t ∈ [t0, θ] for every fixed r ∈ (0,∞).

3. Robustness of the Trajectories

Now let us discuss robustness of the trajectories with respect to the remaining control resource.
In this section it will be assumed that p ∈ (1,∞). Denote

Vp,r =
{

u(·) ∈ Lp

(

[t0, θ];R
m
)

: ‖u(·)‖p = r
}

, (3.1)

and let Zp,r(t0, x0) be the set of trajectories of the system (1.1) generated by all admissible control
functions v(·) ∈ Vp,r.

The following theorem characterises the robustness of a system’s trajectory with respect to the
fast and full consumption of the remaining control resource.

Theorem 2. Let ε > 0 be a given number, x(·) ∈ Xp,r(t0, x0) be a trajectory of the system (1.1)
generated by the admissible control function u(·) ∈ Up,r, ‖u(·)‖p = r1 < r, E∗ ⊂ [t0, θ] be a Lebesgue

measurable set, the control function

v(t) =

{

u(t) if t ∈ [t0, θ] \ E∗ ,

u∗(t) if t ∈ E∗

be such that ‖v(·)‖p = r, y(·) : [t0, θ] → R
n be the trajectory of the system (1.1) generated by the

admissible control functions v(·) ∈ Up,r. If

µ(E∗) ≤
[ ε

2rκ∗

]p/(p−1)
, (3.2)

then ‖x(·)− y(·)‖C ≤ ε where µ(E∗) denotes the Lebesgue measure of the set E∗, κ∗ is defined

by (2.3).

Proof. From Condition B, inclusions u(·) ∈ Up,r, v(·) ∈ Vp,r ⊂ Up,r and Hölder’s inequality it
follows that

‖x(t)− y(t)‖ ≤

t
∫

t0

[γ1 + γ2(‖u(τ)‖ + ‖v(τ)‖)] ‖x(τ)− y(τ)‖ dτ + γ3

∫

E∗

‖u(τ) − v(τ)‖ dτ

≤

t
∫

t0

[γ1 + γ2(‖u(τ)‖ + ‖v(τ)‖)] ‖x(τ)− y(τ)‖ dτ + 2rγ3[µ(E∗)]
(p−1)/p (3.3)
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for every t ∈ [t0, θ]. Taking into consideration the inclusions u(·) ∈ Up,r, v(·) ∈ Vp,r ⊂ Up,r, Hölder’s
inequality, (2.3), (2.4), the inequality (3.2) and applying the Gronwall–Bellman inequality, from (3.3)
we obtain

‖x(t)− y(t)‖ ≤ 2rγ3[µ(E∗)]
(p−1)/p · exp

[

θ
∫

t0

[γ1 + γ2(‖u(τ)‖ + ‖v(τ)‖)] dτ

]

≤ 2rγ3[µ(E∗)]
(p−1)/p · exp [γ1T + 2γ2rT∗] ≤ 2rκ∗[µ(E∗)]

(p−1)/p ≤ ε

for every t ∈ [t0, θ] and hence
‖x(·) − y(·)‖C ≤ ε .

The proof is completed. �

Theorem 3. The equality hC (Xp,r(t0, x0), Zp,r(t0, x0)) = 0 holds.

Proof. Choose an arbitrary ζ > 0 and trajectory y(·) ∈ Xp,r(t0, x0) of the system (1.1)
generated by the control function u(·) ∈ Up,r. Assume that ‖u(·)‖p = r∗ < r. And let the set
A∗ ⊂ [t0, θ] be such that

µ(A∗) ≤
[ ζ

2rκ∗

]p/(p−1)
, (3.4)

where κ∗ is defined by (2.3). Let
∫

[t0,θ]\A∗

‖u(τ)‖p dτ = r
p
1 .

It is obvious that, r1 ≤ r∗. Define new control function u∗(·) : [t0, θ] → R
m, setting

u∗(t) =







u(t) if t ∈ [t0, θ] \ A∗ ,
[rp − r

p
1

T

]1/p
· b if t ∈ A∗

where b ∈ S = {s ∈ R
m : ‖s‖ = 1} is an arbitrarily chosen vector.

It is easy to show that ‖u∗(·)‖p = r and hence u∗(·) ∈ Vp,r where the set of controls Vp,r is
defined by (3.1). Let y∗(·) : [t0, θ] → R

n be the trajectory of the system (1.1) generated by the
control function u∗(·). Then y∗(·) ∈ Zp,r(t0, x0) and by virtue of (3.4) and of the Theorem 2 we have
that

‖y(·) − y∗(·)‖C ≤ ζ .

Since y(·) ∈ Xp,r(t0, x0) is an arbitrarily chosen trajectory, y∗(·) ∈ Zp,r(t0, x0), then the last
inequality implies that

Xp,r(t0, x0) ⊂ Zp,r(t0, x0) + ζBC(1). (3.5)

Taking into consideration that Zp,r(t0, x0) ⊂ Xp,r(t0, x0), from (3.5) we obtain that

hC(Xp,r(t0, x0), Zp,r(t0, x0)) ≤ ζ .

Since ζ > 0 is a an arbitrarily fixed number, then the last inequality completes the proof. �

Note that Theorem 3 can be used for simplification of the approximate construction methods of
the set of trajectories of the system (1.1). According to this theorem, for approximate construction
of the set of trajectories, it is enough to use only the control functions from the set Vp,r.

Corollary 4. The equality cl (Xp,r(t0, x0)) = cl (Zp,r(t0, x0)) is verified, where cl denotes the

closure of a set.

Corollary 5. The equality cl (Xp,r(t; t0, x0)) = cl (Zp,r(t; t0, x0)) is verified for every t ∈ [t0, θ].
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Conclusion

Hausdorff continuity property of the set of trajectories at p = ∞ allows to assert that if
p > P∗(ε), then the Hausdorff distance between the set of trajectories generated by the integrally
constrained control functions u(·) ∈ Up,r and the set of trajectories generated by geometrically
constrained control functions u(·) ∈ U∞,r does not exceed κ∗ε where P∗(ε) and κ∗ have explicit
expressions and depend on the system’s parameters and upper bound of the control resource. This
situation permits to use in applications the geometrically constrained control functions set U∞,r

instead of the set of integrally constrained control functions Up,r and vice versa, if p > P∗(ε). This
means that for p > P∗(ε) the trajectories generated by the integrally constrained and geometrically
constrained control functions have the κ∗ ·ε close behaviours. The robustness of the trajectories with
respect to the remaining control resource means that the consumption of the big amounts of the
control resource on the domains with sufficiently small Lebesgue measures will cause insignificant
changes in the trajectories of the system and therefore it is useful to spend the control resource
in economy mode. This fact says also that if you have unwanted control resource, then spending
this resource on the domain with small Lebesgue measure, you will obtain a small deviation for the
initial trajectory. Finally, the coincidence of the closure of the set of trajectories with the closure of
the set of trajectories obtained by full consumption of the control resource allows in the approximate
construction methods to use only the control functions from the set Vp,r which significantly reduces
the number of the trajectories to be constructed.
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