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THE GIRTHS OF THE CUBIC PANCAKE GRAPHS1

Elena V. Konstantinova, Son En Gun

The pancake graphs Pn, n > 2, are Cayley graphs over the symmetric group Symn generated by prefix-

reversals. There are six generating sets of prefix-reversals of cardinality three which give connected Cayley

graphs over the symmetric group known as cubic pancake graphs. In this paper we study the girth of the cubic

pancake graphs. It is proved that considered cubic pancake graphs have the girths at most twelve.
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Е. В.Константинова, Сон Ен Гун. Обхваты кубических блинных графов.

Блинный граф Pn, n > 2, — это граф Кэли над симметрической группой Symn, порожденный операцией

инверсии префикса. Существует шесть порождающих множеств инверсий префиксов мощности 3, которые

приводят к связным графам Кэли над симметрической группой, известным под названием кубических

блинных графов. В статье изучается обхват кубических графов Кэли. Доказано, что рассматриваемые

кубические блинные графы имеют обхват не больше 12.
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1. Introduction

The pancake graph Pn = (Symn, PR), n > 2, is the Cayley graph over the symmetric group
Symn of permutations π = [π1π2 . . . πn] written as strings in one-line notation, where πi = π(i) for
any 1 6 i 6 n, with the generating set PR = {ri ∈ Symn : 2 6 i 6 n} of all prefix-reversals ri
inversing the order of any substring [1, i], 2 6 i 6 n, of a permutation π when multiplied on the
right, i.e. [π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn]. This graph is well known because of the open
combinatorial pancake problem of finding its diameter [3].

The graph Pn is a connected vertex-transitive (n − 1)-regular graph of order n! with no loops
and multiple edges. It is almost pancyclic [4; 9] since it contains cycles of length ℓ, 6 6 ℓ 6 n!, but
doesn’t contain cycles of length 3, 4 or 5. Since the length of the shortest cycle contained in the
graph is six, hence we have g(Pn) = 6 for any n > 3, where g(Pn) is the girth of Pn. The girths of the
burnt pancake graphs over the hyperoctahedral group was considered in [2]. The (burnt) pancake
graphs are commonly used in computer science to represent interconnection networks [1; 10; 11].

Importance of fixed-degree pancake graphs, in particular, cubic pancake graphs as models of
networks was shown in [1] by D. W. Bass and I. H. Sudborough. The authors have considered cubic
pancake graphs as induced subgraphs of the pancake graph Pn. The necessary conditions for a set
of three prefix-reversals to generate the symmetric group Symn were found. In particular, it was
shown that the cubic pancake graphs over the symmetric group Symn, n > 4, are connected with
the following generating sets:

BS1 = {r2, rn−1, rn}; BS2 = {rn−2, rn−1, rn}; BS3 = {r3, rn−2, rn},where n is even;

1This paper is based on the results of the 2021 Conference of International Mathematical Centers “Groups
and Graphs, Semigroups and Synchronization”.
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Table 1: The girths of the cubic pancake graphs P 6
n , 5 6 n 6 19

n 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

g(P 6
n) 6 8 10 12 12 16 16 16 20 20 20 24 24 24 28

BS4 = {r3, rn−1, rn}, where n is odd; BS5 = {rn−3, rn−1, rn}, where n is odd;

BS6 = {rn−3, rn−2, rn} for any n > 5.

The set BS2 is known as ‘big-3’ flips, and the corresponding cubic pancake graph generated by this
set is called as the ‘big-3’ pancake network [10].

In this paper we study cubic pancake graphs and their girths. Our first result is obtained for
the cubic pancake graphs P i

n = Cay(Symn, BSi) that are Cayley graphs over the symmetric group
Symn generated by the sets BSi, i = 1, . . . , 5.

Theorem 1.

g(P 1
n) = g(P 2

n) = g(P 3
n) =

{

6, when n = 4;

8, when n > 5;
(1.1)

g(P 4
n ) = 8, when n > 5 is odd ; (1.2)

g(P 5
n) =

{

8, when n = 5;

12, when n > 7 is odd.
(1.3)

The computational results on the girths of the cubic pancake graph P 6
n = Cay(Symn, BS6) are

presented in Table 1 for 5 6 n 6 19. It was also computed that g(P 6
n ) = 28 for any 19 6 n 6 33.

One can conjecture that this is true for any n > 19.
The paper is organized as follows. The proof of Theorem 1 is based on the characterization

of small cycles in the pancake graphs. We present preliminary results with main definitions and
notation in Section 2, where two main results show that for any n > 7 there are no 10-cycles and
11-cycles in P 5

n . Then we prove Theorem 1 in Section 3.

2. Preliminary results

The first results on a characterization of small cycles in the pancake graph were obtained in [5]
where the following cycle representation via a product of generating elements was used. A sequence
of prefix-reversals Cℓ = ri0 . . . riℓ−1

, where 2 6 ij 6 n, and ij 6= ij+1 for any 0 6 j 6 ℓ−1, such that
πri0 . . . riℓ−1

= π, where π ∈ Symn, is called a form of a cycle Cℓ of length ℓ. A cycle Cℓ of length ℓ
is also called an ℓ-cycle, and a vertex of Pn is identified with the permutation which corresponds to
this vertex. It is evident that any ℓ-cycle can be presented by 2 ℓ forms (not necessarily different)
with respect to a vertex and a direction. The canonical form Cℓ of an ℓ-cycle is called a form with
a lexicographically maximal sequence of indices i0 . . . iℓ−1. We shortly write Cℓ = (rarb)

k for a cycle
form Cℓ = rarb . . . rarb, where ℓ = 2 k, a 6= b, rarb appears exactly k times and π rarb . . . rarb = π
for any π ∈ Symn. The form Cℓ = (rarb)

k is canonical if a > b. By using this description, the
following results characterizing 6- and 7-cycles were obtained.

Theorem 2 [5, Theorem 1, Lemma 3]. The pancake graph Pn, n > 3, has (n!)/6 independent

6-cycles of the canonical form

C6 = (r3 r2)
3 (2.1)

and n!(n− 3) distinct 7-cycles of the canonical form

C7 = rk rk−1 rk rk−1 rk−2 rk r2, (2.2)

where 4 6 k 6 n. Each of the vertices of Pn belongs to exactly one 6-cycle and 7(n − 3) distinct

7-cycles.
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The complete characterization of 8-cycles is given by the following theorem.

Theorem 3 [7, Theorem 1.3]. Each of vertices of Pn, n > 4, belongs to N = (n3 + 12n2 −
103n + 176)/2 distinct 8-cycles of the following canonical forms:

C1
8 = rk rj ri rj rk rk−j+i ri rk−j+i, 2 6 i < j 6 k−1, 4 6 k 6 n (2.3)

C2
8 = rk rk−1 r2 rk−1 rk r2 r3 r2, 4 6 k 6 n (2.4)

C3
8 = rk rk−i rk−1 ri rk rk−i rk−1 ri, 2 6 i 6 k−2, 4 6 k 6 n (2.5)

C4
8 = rk rk−i+1 rk ri rk rk−i rk−1 ri−1, 3 6 i 6 k−2, 5 6 k 6 n (2.6)

C5
8 = rk rk−1 ri−1 rk rk−i+1 rk−i rk ri, 3 6 i 6 k − 2, 5 6 k 6 n (2.7)

C6
8 = rk rk−1 rk rk−i rk−i−1 rk ri ri+1, 2 6 i 6 k − 3, 5 6 k 6 n (2.8)

C7
8 = rk rk−j+1 rk ri rk rk−j+1 rk ri, 2 6 i < j 6 k − 1, 4 6 k 6 n (2.9)

C8
8 = (r4 r3)

4. (2.10)

The complete characterization of 9-cycles in the pancake graphs were obtained in [6].
In general, the complete characterization of small cycles in the pancake graphs presented in [5;6]

is based on the hierarchical structure of the pancake graphs. The graph Pn, n > 4, is constructed
from n copies of Pn−1(i), 1 6 i 6 n, such that each Pn−1(i) has the vertex set

Vi = {[π1 . . . πn−1i],

where πk ∈ {1, . . . , n} \ {i} : 1 6 k 6 n− 1}, |Vi| = (n− 1)!, and the edge set

Ei = {{[π1 . . . πn−1i], [π1 . . . πn−1i]rj} : 2 6 j 6 n− 1},

where |Ei| =
(n− 1)!(n − 2)

2
. Any two copies Pn−1(i) and Pn−1(j), i 6= j, are connected by (n− 2)!

edges presented as {[iπ2 . . . πn−1j], [jπn−1 . . . π2i]}, where [iπ2 . . . πn−1j]rn = [jπn−1 . . . π2i]. Prefix-
reversals rj , 2 6 j 6 n − 1, defines internal edges in Pn−1(i), 1 6 i 6 n, and the prefix-reversal
rn defines external edges between copies. Copies Pn−1(i), or just Pn−1 when it is not important to
specify the last element of permutations belonging to the copy, are also called (n− 1)−copies.

The hierarchical structure of the pancake graphs is used to prove the following two results.

Theorem 4. In the cubic pancake graphs P 5
n = Cay(Symn, {rn−3, rn−1, rn}), n > 7, there are

no cycles of length 10. For n = 5 there are 10-cycles of the canonical form C10 = (r5 r4)
5.

Proof. Since the cubic pancake graphs P 5
n , n > 5, are induced subgraphs of the pancake

graph Pn, then let us consider all possible cases for forming 10-cycles in the pancake graphs with
taking into account that the generating set of P 5

n contains only three elements rn−3, rn−1, rn, where n
is odd. If n = 5 then there are cycles of length 10 of the canonical form C10 = (r5 r4)

5 (see Lemma 1
in [8]). If n > 7 then due to the hierarchical structure of the pancake graph Pn, cycles of length 10
could be formed from paths of length l, 2 6 l 6 8, belonging to different (n− 1)−copies of Pn.

Further, we consider all possible options for the distribution of vertices by copies.

Without loss of generality we always put τ1 = In = [1 2 3 . . . n− 1n].

Case 1: 10-cycle within Pn has vertices from two copies of Pn−1.

Suppose that a sought 10-cycle is formed on vertices from copies Pn−1(i) and Pn−1(j), where
1 6 i 6= j 6 n. It was shown in [5, Lemma 2] that if two vertices π and τ, belonging to the same
(n−1)−copy, are at the distance at most two, then their external neighbours π and τ should belong
to distinct (n − 1)−copies. Hence, a sought cycle cannot occur in situations when its two (three)
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τ1 = In τ1 = In

τ2τ2 τ3τ3
τ4

τ4

τ5
τ5

τ6

π1

π1

π2 π2π3
π3 π4

π4 π5

rn rn rn rn

Pn−1(n) Pn−1(n)

Pn−1(1) Pn−1(1)

(a) (b)

Fig. 1. (a) (4+6)-situation; (b) (5+5)-situation.

vertices belong to one copy and eight (seven) vertices belong to another one. Therefore, such a cycle
must have at least four vertices in each of the two copies. Hence, there are two following cases.

Case (4+ 6). Suppose that four vertices π1, π2, π3, π4 of a sought 10-cycle belong to one copy,
and other six vertices τ1, τ2, τ3, τ4, τ5, τ6 belong to another copy. Let π1 = τ1rn and π4 = τ6rn.
Since τ1 = In then π1 and π4 should belong to Pn−1(1). Herewith, the four vertices of Pn−1(1)
should form a path of length three whose endpoints should be adjacent to vertices from Pn−1(n).

Consider all options for passing from τ1 to τ6 by internal edges in a copy Pn−1(n). Since the
generating set of P 5

n consists of the elements rn−1 and rn−3 corresponding to internal edges then
there are two ways to get paths of length five from τ1 to τ6 (see Fig. 1a).

The first path is presented as follows:

τ1 (rn−3 rn−1)
2 rn−3 = τ6 (2.11)

such that:

τ1 = [1 2 3 . . . n−1n]
rn−3

−−−→ [n−3n−4 . . . 2 1n−2n−1n]
rn−1

−−−→ [n−1n−2 1 2 . . . n−4n−3n]
rn−3

−−−→

[n− 5n− 6 . . . 2 1n− 2n− 1n− 4n− 3n]
rn−1

−−−→ [n− 3n− 4n− 1n− 2 1 2 . . . n− 6n− 5n]
rn−3

−−−→

[n− 7n− 8 . . . 2 1n − 2n− 1n − 4n− 3n− 6n − 5n] = τ6.

Since π4 = τ6 rn then we have:

π4 = [nn− 5n− 6n− 3n − 4n− 1n− 2 1 2 . . . n− 8n− 7]. (2.12)

Note that π1 = τ1 rn = [nn− 1 . . . 2 1] with π1
n = 1 for any n > 5. Hence, we immediately can

conclude that π4 given by (2.12) and π1 belong to different copies of Pn since π4
n 6= 1 for any odd

n > 7. For n = 5 we get π4 = [5 3 4 2 1] and there is no path of length three between π4 and π1,
presented as rn−3 rn−1 rn−3 or rn−1 rn−3 rn−1, since π4 r2 r4 r2 = [4 2 5 3 1] and π4 r4 r2 r4 = [5 3 2 4 1].
This gives a contradiction with an assumption that π1 and π4 belong to the same copy Pn−1(1).
Thus, a sought cycle cannot occur neither in Pn nor in P 5

n .
The second path is presented as follows:

τ1 (rn−1 rn−3)
2 rn−1 = τ6 (2.13)

such that

τ1 = [1 2 3 . . . n− 1n]
rn−1

−−−→ [n− 1n− 2 . . . 2 1n]
rn−3

−−−→ [3 4 . . . n− 2n − 1 2 1n]
rn−1

−−−→
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[1 2n − 1n − 2 . . . 4 3n]
rn−3

−−−→ [5 6 . . . n− 2n− 1 2 1 4 3n]
rn−1

−−−→ [3 4 1 2n − 1n − 2 . . . 6 5n] = τ6,

and hence
π4 = τ6 rn = [n 5 6 . . . n− 2n− 1 2 1 4 3],

which means that this permutation belongs to Pn−1(3). However, π1 belongs to Pn−1(1) which gives
a contradiction again. Thus, a sought 10-cycle cannot occur in this case.

Case (5+ 5). Suppose that five vertices π1, π2, π3, π4, π5 of a sought 10-cycle belong to a copy
Pn−1(1), and other five vertices τ1, τ2, τ3, τ4, τ5 belong to a copy Pn−1(n), where τ1 = In, π1 = τ1rn,
and π5 = τ5rn. Then the five vertices of Pn−1(1) should form a path of length four whose endpoints
should be adjacent to the vertices from Pn−1(n) (see Fig. 1b).

There are two ways to get paths of length four from τ1 to τ5.
The first way is given as follows:

τ1 (rn−3 rn−1)
2 = τ5,

more precisely, we have:

τ1 = [1 2 3 . . . n−1n]
rn−3

−−−→ [n−3n−4 . . . 2 1n−2n−1n]
rn−1

−−−→ [n−1n−2 1 2 . . . n−4n−3n]
rn−3

−−−→

[n− 5n− 6 . . . 2 1n− 2n− 1n− 4n− 3n]
rn−1

−−−→ [n− 3n− 4n− 1n− 2 1 2 . . . n− 6n− 5n] = τ5.

The second way is presented as follows:

τ1 (rn−1 rn−3)
2 = τ5,

and we have:

τ1 = [1 2 3 . . . n− 1n]
rn−1

−−−→ [n− 1n− 2 . . . 2 1n]
rn−3

−−−→ [3 4 . . . n− 2n − 1 2 1n]
rn−1

−−−→

[1 2n − 1n− 2 . . . 4 3n]
rn−3

−−−→ [5 6 . . . n− 2n− 1 2 1 4 3n] = τ5.

Since π5 = τ5 rn then we have either:

π5 = [nn− 5n− 6 . . . 2 1n − 2n− 1n − 4n− 3] or π5 = [n 3 4 1 2n − 1n − 2 . . . 6 5],

which gives a contradiction with an assumption that π1 and π5 belong to the copy Pn−1(1) for any
odd n > 5. Thus, in this case a sought cycle cannot occur in Pn, and hence in P 5

n .

Case 2: 10-cycle within Pn has vertices from three copies of Pn−1.

There are four possible situations in this case.

Case (2+ 2+ 6). Suppose that two vertices π1, π2 of a sought 10-cycle belong to one copy, other
two vertices τ1, τ2 belong to another copy, and remaining six vertices γ1, γ2, γ3, γ4, γ5, γ6 belong to
the third copy. Let π1 = τ2rn, π2 = γ6rn, and τ1 = γ1rn = In, then γ1 and γ6 should belong to
Pn−1(1) (see Fig. 2a). It is evident that there are two ways to get paths of length one from τ1 to τ2:

τ1 = [1 2 3 . . . n− 1n]
rn−3

−−−→ [n− 3n− 4 . . . 2 1n − 2n− 1n] = τ2

or
τ1 = [1 2 3 . . . n− 1n]

rn−1

−−−→ [n− 1n − 2 . . . 2 1n] = τ2.

Since π1 = τ2 rn, we have either

π1 = [nn− 1n− 2 1 2 . . . n− 4n− 3] or π1 = [n 1 2 . . . n− 2n− 1].

Similar, there are two ways to get a path of length one from π1 to π2 such that the first way is
given by π1rn−3 = π2, where we have either π2 = [n− 6n− 7 . . . 2 1n− 2n− 1nn− 5n− 4n− 3]
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τ1 = In τ1 = Inτ2 τ2

π1 π1

π2

π2

π3

γ1 γ1

γ2 γ2

γ3

γ3

γ4

γ4

γ5

γ5γ6

rn

rn

rn rn rn

rn

Pn−1(n) Pn−1(n)

Pn−1(1) Pn−1(1)

(a) (b)

Fig. 2. (a) (2+2+6)-situation; (b) (2+3+5)-situation.

or π2 = [n− 4n− 5 . . . 2 1nn− 3n− 2n− 1], and the second way is given by π1rn−1 = π2, where
we have either π2 = [n− 4n− 5 . . . 2 1n− 2n− 1nn− 3] or π2 = [n− 2n− 3 . . . 2 1nn− 1], and
since γ6 = π2 rn we get:

γ6 =























[n− 3n − 4n− 5nn− 1n− 2 1 2 . . . n− 7n − 6] = γ6(A) or

[n− 1n − 2n− 3n 1 2 . . . n− 5n− 4] = γ6(B) or

[n− 3nn − 1n − 2 1 2 . . . n− 5n− 4] = γ6(C) or

[n− 1n 1 2 . . . n− 3n − 2] = γ6(D).

To get a sought 10-cycle there should be a path of length five between γ6 and γ1, where γ1 =
τ1 rn = [nn − 1 . . . 2 1]. Let us check this. If n = 5 the vertices γ6(B), γ6(C) and γ1 = [5 4 3 2 1]
belong to the copy Pn−1(1), and there are two ways to get a path of length five from γ6 and γ1.
Namely, applying (r2 r4)

2r2 to γ6 we have either:

γ6(B) = [4 3 2 5 1]
r2−→ [3 4 2 5 1]

r4−→ [5 2 4 3 1]
r2−→ [2 5 4 3 1]

r4−→ [3 4 5 2 1]
r2−→ [4 3 5 2 1] 6= γ1

or

γ6(C) = [2 5 4 3 1]
r2−→ [5 2 4 3 1]

r4−→ [3 4 2 5 1]
r2−→ [4 3 2 5 1]

r4−→ [5 2 3 4 1]
r2−→ [2 5 3 4 1] 6= γ1,

and applying (r4r2)
2r4 to γ6 we have either:

γ6(B) = [4 3 2 5 1]
r4−→ [5 2 3 4 1]

r2−→ [2 5 3 4 1]
r4−→ [4 3 5 2 1]

r2−→ [3 4 5 2 1]
r4−→ [2 5 4 3 1] 6= γ1

or

γ6(C) = [2 5 4 3 1]
r4−→ [3 4 5 2 1]

r2−→ [4 3 5 2 1]
r4−→ [2 5 3 4 1]

r2−→ [5 2 3 4 1]
r4−→ [4 3 2 5 1] 6= γ1.

Hence, a path of length five does not occur between γ6 and γ1.

If n = 7 the vertices γ6(A) and γ1 = [7 6 5 4 3 2 1] belong to the copy Pn−1(1), and the following
two cases are possible:

γ6(A)(r4 r6)
2r4 = [4 3 2 7 6 5 1](r4 r6)

2r4 = [6 5 2 7 4 3 1] 6= γ1

or

γ6(A)(r6 r4)
2r6 = [4 3 2 7 6 5 1](r6 r4)

2r6 = [2 7 4 3 5 6 1] 6= γ1.
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Again, a path of length five does not occur between γ6 and γ1.

If n > 9, there is a contradiction with an assumption that γ1 and γ6 belong to the copy Pn−1(1).
Thus, a sought cycle cannot occur in this case.

Case (2+ 3+ 5). Suppose that two vertices τ1, τ2 of a sought 10-cycle belong to one copy,
other three vertices π1, π2, π3 belong to another copy, and remaining five vertices γ1, γ2, γ3, γ4, γ5

belong to the third copy. Let π1 = τ2rn, π3 = γ5rn, and τ1 = γ1rn = In, then γ1 and γ5 should
belong to Pn−1(1) (see Fig. 2b). There are two ways to get a path of length two from τ1 = In to π1

such that either

τ1rn−3rn = [nn− 1n− 2 1 2 . . . n− 4n − 3] = π1 or τ1rn−1rn = [n 1 2 . . . n− 2n − 1] = π1.

Similar, there are two ways to get a path of length two from π1 to π3. The first one is presented
as follows:

π1rn−3rn−1 = π3, (2.14)

such that either

π1 = [nn− 1n− 2 1 2 . . . n− 4n− 3]
rn−3

−−−→ [n− 6n− 7 . . . 2 1n− 2n− 1nn− 5n− 4n− 3]
rn−1

−−−→

[n− 4n− 5nn− 1n − 2 1 2 . . . n− 7n− 6n− 3] = π3

or

π1 = [n 1 2 . . . n− 2n− 1]
rn−3

−−−→ [n− 4n− 5 . . . 2 1nn − 3n− 2n− 1]
rn−1

−−−→

[n− 2n − 3n 1 2 3 . . . n− 5n− 4n − 1] = π3.

The second way is presented as follows:

π1rn−1rn−3 = π3, (2.15)

such that either

π1 = [nn− 1n− 2 1 2 . . . n− 4n− 3]
rn−1

−−−→ [n− 4n− 5 . . . 2 1n− 2n − 1nn− 3]
rn−3

−−−→

[n− 2 1 2 3 . . . n− 4n− 1nn− 3] = π3

or

π1 = [n 1 2 . . . n− 2n − 1]
rn−1

−−−→ [n− 2n − 3 . . . 2 1nn − 1]
rn−3

−−−→ [2 3 . . . n− 2 1nn − 1] = π3.

Since π3 = γ5 rn, then by (2.14) and (2.15) we obtain:

γ5 =























[n− 3n− 6n − 7 . . . 2 1n − 2n − 1nn− 5n− 4] = γ5(A) or

[n− 1n− 4 . . . 3 2 1nn − 3n− 2] = γ5(B) or

[n− 3nn− 1n− 4 . . . 3 2 1n − 2] = γ5(C) or

[n− 1n 1n− 2 . . . 3 2] = γ5(D).

To get a sought 10-cycle there should be a path of length four between γ5 and γ1, where γ1 =
τ1 rn = [nn − 1 . . . 2 1]. Let us check this. If n = 5 the vertices γ5(A) = In rn−3 rn rn−3 rn−1 rn =
[2 4 5 3 1] and γ1 = [5 4 3 2 1] belong to the copy Pn−1(1), and the following cases are possible:

γ5(A)(rn−3 rn−1)
2 = [2 4 5 3 1](r2 r4)

2 = [4 2 3 5 1] 6= γ1

or

γ5(A)(rn−1 rn−3)
2 = [2 4 5 3 1](r4 r2)

2 = [4 2 3 5 1] 6= γ1.
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Hence, a path of length four does not occur between γ5 and γ1. However, let us note that in this
case we have a cycle of length eight given by the canonical form C8 = (r4 r2)

4 obtained from (2.9)
by putting k = 4, j = 3, i = 2.

If n > 7, there is a contradiction with an assumption that γ1 and γ6 belong to the copy Pn−1(1).
Thus, a sought cycle cannot occur in this case.

Case (2+ 4+ 4). Suppose that two vertices τ1, τ2 of a sought 10-cycle belong to one copy,
other four vertices π1, π2, π3, π4 belong to another copy, and remaining four vertices γ1, γ2, γ3, γ4

belong to the third copy (see Fig. 3a). Let π1 = τ1rn = [nn − 1n − 2 . . . 2 1], π4 = γ4rn, and
τ2 = γ1rn. Then both γ1 and γ4 should belong to either Pn−1(n − 1) or Pn−1(n − 3), since either
γ1 = τ1rn−1rn or γ1 = τ1rn−3rn. More precisely, we have:

γ1 =

{

[n 1 2 . . . n− 2n − 1] = γ1(A) or

[nn− 1n− 2 1 2 . . . n− 4n− 3] = γ1(B).
(2.16)

On the other hand, there are two ways to get a path of length three from π1 to π4. The first
way is presented as follows:

π1rn−3rn−1rn−3 = π4 (2.17)

such that we have:

π1 = [nn− 1n− 2 . . . 5 4 3 2 1]
rn−3

−−−→ [4 5 . . . n− 1n 3 2 1]
rn−1

−−−→

[2 3nn − 1 . . . 5 4 1]
rn−3

−−−→ [6 7 . . . n− 1n 3 2 5 4 1] = π4.

The second way is presented as follows:

π1rn−1rn−3rn−1 = π4, (2.18)

where we have:

π1 = [nn− 1n − 2 . . . 2 1]
rn−1

−−−→ [2 3 . . . n− 2n− 1n 1]
rn−3

−−−→

[n− 2n− 3 . . . 3 2n − 1n 1]
rn−1

−−−→ [nn− 1 2 3 . . . n− 3n − 2 1] = π4.

Since π4 = γ4 rn, then by (2.17) and (2.18) we obtain:

γ4 =

{

[1 4 5 2 3nn − 1 . . . 7 6] = γ4(C) or

[1n− 2 . . . 3 2n − 1n] = γ4(D).
(2.19)

τ1 = Inτ1 = In
τ2

τ2 τ3

π1 π1

π2

π2

π3

π3π4

γ1

γ1

γ2

γ2

γ3

γ3

γ4

γ4

rnrn

rnrnrnrn

Pn−1(n)Pn−1(n)

(a) (b)

Fig. 3. (a) (2+4+4)-situation; (b) (3+3+4)-situation.
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To get a sought 10-cycle there should be a path of length three between γ1 and γ4 (see Fig. 3a).
Let us check this.

If n = 5 or n > 11, there is a contradiction with an assumption that both γ1 and γ4 belong to
either Pn−1(n− 1) or Pn−1(n− 3).

If n = 7 then by (2.16) and (2.19) we have γ1(B) = [7 1 2 3 4 5 6] and γ4(C) = [1 4 5 2 3 7 6], but
there is no path of length three between them, since we have either

γ4(C) r4 r6 r4 = [4 1 3 7 5 2 6] 6= γ1(B) or γ4(C) r6 r4 r6 = [1 4 7 3 2 5 6] 6= γ1(B).

If n = 9 then by (2.16) and (2.19) we have γ1(A) = [9 8 7 1 2 3 4 5 6] and γ4(C) = [1 4 5 2 3 9 8 7 6],
but there is no path of length three between them, since we have either

γ4(C) r6 r8 r6 = [2 5 4 1 8 7 3 9 6] 6= γ1(A) or γ4(C) r8 r6 r8 = [1 4 7 8 9 3 2 5 6] 6= γ1(A).

Thus, a sought cycle cannot occur in this case.

Case (3+ 3+ 4). Suppose that three vertices τ1, τ2, τ3 of a sought 10-cycle belong to one copy,
other three vertices π1, π2, π3 belong to another copy, and remaining four vertices γ1, γ2, γ3, γ4

belong to the third copy (see Fig. 3b). Let π1 = τ1 rn, π3 = γ4 rn, and τ3 = γ1 rn. Then both
γ1 and γ4 should belong to either Pn−1(n − 1) or Pn−1(3), since either γ1 = τ1rn−1rn−3rn or
γ1 = τ1rn−3rn−1rn. More precisely, we have:

γ1 =

{

[n 1 2n − 1n− 2 . . . 4 3] = γ1(A) or

[nn− 3n− 4 . . . 2 1n − 2n− 1] = γ1(B).
(2.20)

On the other hand, since π1 = τ1 rn = [nn− 1n− 2 . . . 2 1], then by (2.14) and (2.15) there are
two ways to get a path of length two from π1 to π3 such that either

π1rn−3rn−1 = [2 3nn − 1 . . . 5 4 1] = π3 or π1rn−1rn−3 = [n− 2n− 3 . . . 3 2n − 1n 1] = π3,

and since π3 = γ4 rn, then we have:

γ4 =

{

[1 4 5 . . . n− 1n 3 2] = γ4(C) or

[1nn− 1 2 3 . . . n− 3n− 2] = γ4(D).
(2.21)

To get a sought 10-cycle there should be a path of length three between γ1 and γ4. Let us check
this. If n = 5 then by (2.20) and (2.21) we have γ1(A) = [5 1 2 4 3] and γ4(D) = [1 5 4 2 3], but there
is no path of length three between them, since we have either

γ4(D) r2 r4 r2 = [4 2 1 5 3] 6= γ1(A) or γ4(D) r4 r2 r4 = [1 5 2 4 3] 6= γ1(A).

If n > 7 then by (2.20) and (2.21) there is a contradiction with an assumption that both γ1 and γ4

belong to either Pn−1(n− 1) or Pn−1(3). Hence, a sought cycle cannot occur in this case.

Case 3: 10-cycle within Pn has vertices from four copies of Pn−1.

There are two possible situations in this case.

Case (2+ 2+ 2+ 4). Suppose that two vertices π1, π2 of a sought 10-cycle belong to the first
copy, two vertices τ1, τ2 belong to the second copy, two vertices γ1, γ2 belong to the third copy and
remaining four vertices σ1, σ2, σ3, σ4 belong to the fourth copy (see Fig. 4).

Let π1 = τ2rn, π2 = σ4rn, τ1 = γ1rn and γ2 = σ1rn, then both σ1 and σ4 should belong to
either Pn−1(4) or Pn−1(2), since either σ1 = τ1rnrn−1rn or σ1 = τ1rnrn−3rn. More precisely, we
have:

σ1 =

{

[1nn− 1n − 2 . . . 3 2] = σ1(A) or

[1 2 3nn − 1n − 2 . . . 6 5 4] = σ1(B).
(2.22)
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τ1 = In τ2

π1

π2

γ1

γ2

rn rn

rn rn

Pn−1(n)

σ1

σ2 σ3

σ4

Fig. 4. (2+2+2+4)-situation.

On the other hand, similar to Case (2 + 2 + 6) there are four ways to reach σ4 by a path of length
four from τ1 such that we have:

σ4 =























[n− 3n− 4n− 5nn− 1n − 2 1 2 . . . n− 7n− 6] = σ4(C) or

[n− 1n− 2n− 3n 1 2 . . . n− 5n− 4] = σ4(D) or

[n− 3nn− 1n− 2 1 2 . . . n− 5n− 4] = σ4(E) or

[n− 1n 1 2 . . . n− 3n− 2] = σ4(F ).

(2.23)

To get a sought 10-cycle there should be a path of length three between σ1 and σ4. Let us check
this. If n = 5 then by (2.22) we have σ1(B) = [1 2 3 5 4] and σ4(C) = In (rn−3 rn)

2 = [2 1 3 5 4], but
there is no path of length three between them, since we have either

σ4(C) r2 r4 r2 = [3 5 2 1 4] 6= σ1(B) or σ4(C) r4 r2 r4 = [2 1 5 3 4] 6= σ1(B).

If n > 7 then by (2.22) and (2.23) there is a contradiction with an assumption that both σ1 and
σ4 belong to either Pn−1(4) or Pn−1(2). Hence, a sought cycle cannot occur in this case.

Case (2+ 2+ 3+ 3). There are two subcases due to a sequence of vertices from copies forming
a cycle: 1) (2,3,3,2); 2) (3,2,3,2) (see Fig. 5)

Subcase 1. Suppose that two vertices τ1, τ2 of a sought 10-cycle belong to the first copy, three
vertices π1, π2, π3 belong to the second copy, three vertices σ1, σ2, σ3 belong to the third copy and
remaining two vertices γ1, γ2 belong to the fourth copy (see Fig. 5a).

Let π1 = τ2 rn, σ3 = π3 rn, and γ1 = τ1 rn, σ1 = γ2 rn. Similar to Case (2 + 3 + 5) there are
four ways to reach σ3 by a path of length five from τ1 such that we have:

σ3 =























[n− 3n − 6n − 7 . . . 3 2 1n − 2n − 1nn− 5n− 4] = σ3(A) or

[n− 1n − 4n − 5 . . . 3 2 1nn − 3n− 2] = σ3(B) or

[n− 3nn− 1n − 4n − 5 . . . 3 2 1n − 2] = σ3(C) or

[n− 1n 1n − 2n− 3 . . . 3 2] = σ3(D).

On the other hand, since γ1 = τ1 rn and τ1 = In then γ1 = [nn− 1n− 2 . . . 2 1], and there are two
ways to get a path of length one from γ1 to γ2 such that either

γ1 = [nn− 1n − 2 . . . 5 4 3 2 1]
rn−3

−−−→ [4 5 . . . n− 2n− 1n 3 2 1] = γ2
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τ1 = Inτ1 = In

τ2
τ2

τ3

π1π1

π2

π2

π3

γ1 γ1

γ2
γ2

rn
rn

rnrn

rn rn

rn rn

Pn−1(n)Pn−1(n)

(a) (b)

σ1 σ1

σ2σ2

σ3 σ3

Fig. 5. (2+2+3+3)-situation.

or

γ1 = [nn− 1n− 2 . . . 3 2 1]
rn−1

−−−→ [2 3 . . . n− 2n− 1n 1] = γ2,

and since σ1 = γ2 rn then we have either

σ1 = [1 2 3nn − 1n− 2 . . . 6 5 4] = σ1(E) or σ1 = [1nn− 1n − 2 . . . 3 2] = σ1(F ).

As one can see, vertices σ1(F ) and σ3(D) belong to the same copy Pn−1(2). Let us check whether
there is a path of length two between these two vertices. Indeed, there are two ways to get a path
of length two from σ1(F ) to σ3(D). The first way is presented as follows:

σ1rn−1rn−3 = σ3, (2.24)

where

σ1(F ) = [1nn− 1 . . . 3 2]
rn−1

−−−→ [3 4 . . . n− 1n 1 2]
rn−3

−−−→ [n− 1n− 2 . . . 4 3n 1 2] 6= σ3(D).

The second way is presented as follows:

σ1rn−3rn−1 = σ3, (2.25)

where

σ1(F ) = [1nn− 1 . . . 3 2]
rn−3

−−−→ [5 6 . . . n− 1n 1 4 3 2]
rn−1

−−−→ [3 4 1nn − 1 . . . 6 5 2] 6= σ3(D).

Thus, a sought cycle cannot occur in this subcase.

Subcase 2. Suppose that three vertices τ1, τ2, τ3 of a sought 10-cycle belong to the first copy,
two vertices π1, π2 belong to the second copy, three vertices σ1, σ2, σ3 belong to the third copy and
remaining two vertices γ1, γ2 belong to the fourth copy. Let π1 = τ3rn, σ3 = π2rn and γ1 = τ1rn =
In, σ1 = γ2rn (see Fig. 5b). There are two ways to get a path of length two from τ1 to τ3. The first
way is given as follows:

τ1rn−3rn−1 = τ3, (2.26)

where

τ1 = [1 2 3 . . . n−1n]
rn−3

−−−→ [n−3n−4 . . . 2 1n−2n−1n]
rn−1

−−−→ [n−1n−2 1 2 . . . n−4n−3n] = τ3.
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The second way is given as follows:

τ1rn−1rn−3 = τ3, (2.27)

where

τ1 = [1 2 3 . . . n− 1n]
rn−1

−−−→ [n− 1n − 2 . . . 2 1n]
rn−3

−−−→ [3 4 . . . n− 2n− 1 2 1n] = τ3.

Since π1 = τ3 rn, then by (2.26) and (2.27) either π1 = [nn − 3n − 4 . . . 2 1n − 2n − 1] or
π1 = [n 1 2n − 1n− 2 . . . 4 3], and since either π2 = π1 rn−1 or π2 = π1 rn−3 we have:

π2 =























[2 3 . . . n− 4n − 3n 1n− 2n − 1] = π2(A) or

[6 7 . . . n− 2n − 1 2 1n 5 4 3] = π2(B) or

[n− 2 1 2 . . . n− 4n− 3nn− 1] = π2(C) or

[4 5 . . . n− 2n − 1 2 1n 3] = π2(D),

such that with σ3 = π2rn we obtain:

σ3 =























[n− 1n− 2 1nn − 3n − 4 . . . 3 2] = σ3(A) or

[3 4 5n 1 2n − 1n − 2 . . . 7 6] = σ3(B) or

[n− 1nn− 3n− 4 . . . 2 1n − 2] = σ3(C) or

[3n 1 2n − 1n− 2 . . . 5 4] = σ3(D).

On the other hand, there are two ways to get a path of length three from τ1 to σ1 such that
either

σ1 = τ1 rn rn−3 rn = [1 2 3n . . . 6 5 4] = σ1(E) or σ1 = τ1 rn rn−1 rn = [1nn − 1 . . . 3 2] = σ1(F ).

It is easy to see that vertices σ1(E) and σ3(D) belong to the copy Pn−1(4). Let us check whether
there is a path of length two between these two vertices. By (2.24) and (2.25), there are two ways
to get a path of length two from σ1(E) to σ3(D) such that either

σ1(E) = [1 2 3n . . . 6 5 4]
rn−1

−−−→ [5 6 . . . n− 1n 3 2 1 4]
rn−3

−−−→ [3nn− 1 . . . 6 5 2 1 4] 6= σ3(D),

or

σ1(E) = [1 2 3n . . . 6 5 4]
rn−3

−−−→ [7 8 . . . n− 1n 3 2 1 6 5 4]
rn−1

−−−→ [5 6 1 2 3nn − 1 . . . 8 7 4] 6= σ3(D).

Hence, there is no path of length two between these two vertices.

One can also see that vertices σ1(F ) and σ3(A) belong to the copy Pn−1(2). Let us check whether
there is a path of length two between these two vertices. By (2.24) and (2.25), there are two ways
to get a path of length two from σ1(F ) to σ3(A) such as either

σ1(F ) = [1nn− 1 . . . 3 2]
rn−1

−−−→ [3 4 . . . n− 1n 1 2]
rn−3

−−−→ [n− 1n− 2 . . . 4 3n 1 2] 6= σ3(A),

or

σ1(F ) = [1nn− 1 . . . 3 2]
rn−3

−−−→ [5 6 . . . n− 1n 1 4 3 2]
rn−1

−−−→ [3 4 1nn − 1 . . . 6 5 2] 6= σ3(A).

Hence, there is no path of length two between these two vertices, and a sought cycle cannot
occur in this subcase.

Case 4: 10-cycle within Pn has vertices from five copies of Pn−1.

There is the only possible situation if each of five copies has two vertices.
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Case (2+ 2+ 2+ 2+ 2). Suppose that vertices π1, π2 of a sought 10-cycle belong to the first
copy, vertices τ1, τ2 belong to the second copy, vertices γ1, γ2 belong to the third copy, vertices
δ1, δ2 belong to the fourth copy and vertices σ1, σ2 belong to the fifth copy.

Let π1 = τ2rn, γ1 = τ1 rn, σ1 = γ2 rn, δ2 = π2 rn and δ1 = σ2 rn. Since τ2 can be reached from
τ1 by either rn−1 or rn−3, and the same we have for π2 and π1, then there are four ways to get a
path of length three from τ1 = In to π2 (see Fig. 6) such that:

π2 =























[n− 6n− 7 . . . 2 1n − 2n− 1nn− 5n − 4n− 3] or

[n− 4n− 5 . . . 2 1nn − 3n− 2n− 1] or

[n− 4n− 5 . . . 2 1n − 2n− 1nn− 3] or

[n− 2n− 3 . . . 2 1nn − 1],

and since δ2 = π2 rn we have:

δ2 =























[n− 3n − 4n − 5nn− 1n− 2 1 2 . . . n− 7n− 6] or

[n− 1n − 2n − 3n 1 2 . . . n− 5n − 4] or

[n− 3nn− 1n − 2 1 2 . . . n− 5n − 4] or

[n− 1n 1 2 . . . n− 3n− 2].

(2.28)

On the other hand, there are two ways to get a path of length two from τ1 to γ2 such that either

τ1 rn rn−3 = [4 5 . . . n− 1n 3 2 1] = γ2 or τ1 rn rn−1 = [2 3 . . . n− 1n 1] = γ2,

and since σ1 = γ2rn we have:

σ1 =

{

[1 2 3n . . . 6 5 4] or

[1nn− 1 . . . 3 2],

and since either σ2 = σ1 rn−1 or σ2 = σ1 rn−3 we also have:

σ2 =























[7 8 . . . n− 1n 3 2 1 6 5 4] or

[5 6 . . . n− 1n 1 4 3 2] or

[5 6 . . . n− 1n 3 2 1 4] or

[3 4 . . . n− 1n 1 2],

which gives us δ1 = σ2 rn as follows:

δ1 =























[4 5 6 1 2 3nn − 1 . . . 8 7] or

[2 3 4 1nn − 1 . . . 6 5] or

[4 1 2 3nn − 1 . . . 6 5] or

[2 1nn − 1 . . . 4 3].

(2.29)

To get a sought 10-cycle, either δ1 = δ2 rn−3 or δ1 = δ2 rn−1 should hold. Let us check this.
If n = 5, then by (2.28) and (2.29) we have:

δ1 =























[4 5 3 1 2] = In(rn rn−3)
2 rn or

[2 3 4 1 5] or

[4 1 2 3 5] or

[2 1 5 4 3],

δ2 =























[4 3 2 5 1] or

[4 5 1 2 3] or

[2 1 3 5 4] or

[2 5 4 3 1].

As one can see, there are two vertices [2 1 5 4 3] and [4 5 1 2 3] belonging to the same copy, and
there is the only way to get a sought 10-cycle containing these vertices by the canonical form
C10 = (r5 r4)

5.
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τ1 = In τ2

π1

π2

γ1

γ2

rn rn

rn

rn

rn

Pn−1(n)

σ1

σ2 δ1
δ2

Fig. 6. (2+2+2+2+2)-situation.

If n = 7, then by (2.28) and (2.29) we have:

δ1 =























[4 5 6 1 2 3 7] or

[2 3 4 1 7 6 5] or

[4 1 2 3 7 6 5] or

[2 1 7 6 5 4 3],

δ2 =























[4 3 2 7 6 5 1] or

[6 5 4 7 1 2 3] or

[4 7 6 5 1 2 3] or

[6 7 1 2 3 4 5].

It is evident that neither [6 5 4 7 1 2 3] nor [4 7 6 5 1 2 3] could not be reached from [2 1 7 6 5 4 3] neither
by r4 nor by r6. Thus, a sought 10-cycle can not occur in this case. By using similar arguments,
one can check that for n = 9, 11, 13 there is no 10-cycle in the graph. For any odd n > 15, there is
a contradiction with an assumption that both δ1 and δ2 belong to the same copy.

This complete the proof since all possible cases are considered. A 10-cycle in the graph P 5
n occurs

only in the case when n = 5 and with the canonical form C10 = (r5 r4)
5. �

Theorem 5. In the cubic pancake graphs P 5
n , n > 5, there are no cycles of length 11.

Proof. To prove this theorem, we use the same arguments as we used to prove Theorem 4.
Namely, we consider all possible cases for forming 11-cycles in the pancake graphs Pn with taking
into account that the generating set of P 5

n contains only three elements rn−3, rn−1, rn, where n is
odd. Due to the hierarchical structure of Pn, cycles of length 11 could be formed from paths of
length l, 2 6 l 6 9, belonging to different (n − 1)−copies of Pn. Further, we consider all possible
options for the distribution of vertices by copies.

Within the proof without loss of generality we always put τ1 = In = [1 2 3 . . . n− 1n].

Case 1: 11-cycle within Pn has vertices from two copies of Pn−1.

Suppose that a sought 11-cycle is formed on vertices from two different copies of Pn−1. By [5,
Lemma 2], such a cycle cannot occur if its two (three) vertices belong to one copy and nine (eight)
vertices belong to another one. Therefore, a sought cycle must have at least four vertices in each of
the two copies. Hence, there are two following cases.

Case (4+ 7). Suppose that four vertices π1, π2, π3, π4 of a sought 11-cycle belong to one copy,
and other seven vertices τ1, τ2, τ3, τ4, τ5, τ6, τ7 belong to another copy. Let π1 = τ1rn, π4 = τ7rn,
then π1 and π4 should belong to Pn−1(1). Herewith, the four vertices of Pn−1(1) should form a path
of length three whose endpoints should be adjacent to vertices from Pn−1(n). On the other hand,
it is obvious that there are only two ways to get path of length six from τ1 to τ7, namely, either:

τ1 (rn−3 rn−1)
3 = [n− 5n− 6n − 3n− 4n− 1n − 2 1 2 . . . n− 8n− 7n] = τ7
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or

τ1 (rn−1 rn−3)
3 = [7 8 . . . n− 2n − 1 2 1 4 3 6 5n] = τ7.

Since π4 = τ7 rn then we have either:

π4 = [nn− 7n− 8 . . . 2 1n − 2n− 1n − 4n− 3n− 6n − 5]

or

π4 = [n 5 6 3 4 1 2n − 1n − 2 . . . 8 7].

Note that π1 = τ1 rn = [nn − 1 . . . 2 1] with π1
n = 1 for any n > 5. Hence, we immediately

can conclude that π4 and π1 belong to different copies of Pn since π4
n 6= 1 for any odd n > 5. This

gives a contradiction with an assumption that π1 and π4 belong to the same copy Pn−1(1). Thus,
a sought 11-cycle cannot occur in this case.

Case (5+ 6). Suppose that five vertices π1, π2, π3, π4, π5 of a sought 11-cycle belong to copy
Pn−1(1), and other six vertices τ1, τ2, τ3, τ4, τ5, τ6 belong to copy Pn−1(n), where π1 = τ1rn, and
π5 = τ6rn. Herewith, the five vertices of Pn−1(1) should form a path of length four whose endpoints
should be adjacent to vertices from Pn−1(n). By (2.11) and (2.13), there are two ways to get paths
of length five from τ1 to τ6. Moreover, since π5 = τ6 rn then we have either:

π5 = [nn− 5n − 6n− 3n− 4n − 1n − 2 1 2 . . . n− 8n− 7]

or

π5 = [n 5 6 . . . n− 2n− 1 2 1 4 3].

Since π1 = τ1 rn = [nn − 1 . . . 2 1] with π1
n = 1 for any n > 5, then we immediately can

conclude that π5 and π1 belong to different copies of Pn since π5
n 6= 1 for any odd n > 5. This

gives a contradiction with an assumption that π1 and π5 belong to the same copy Pn−1(1). Thus,
a sought 11-cycle cannot occur in this case.

Case 2: 11-cycle within Pn has vertices from three copies of Pn−1.

There are five different situations in this case.

Case (2+ 2+ 7). Suppose that two vertices π1, π2 of a sought 11-cycle belong to one copy,
other two vertices τ1, τ2 belong to another copy, and remaining seven vertices γ1, γ2, γ3, γ4, γ5, γ6, γ7

belong to the third copy. Let π1 = τ2rn, π2 = γ7rn, τ1 = γ1rn, then γ1 and γ7 should belong to
Pn−1(1). Using similar reasoning shown in the proof of Theorem 4, Case (2+2+6), one can conclude
that there are four ways to reach γ7 by a path of length four from τ1 = In such that we have:

γ7 =























[n− 3n − 4n− 5nn− 1n− 2 1 2 . . . n− 7n − 6] = γ7(A) or

[n− 1n − 2n− 3n 1 2 . . . n− 5n− 4] = γ7(B) or

[n− 3nn − 1n − 2 1 2 . . . n− 5n− 4] = γ7(C) or

[n− 1n 1 2 . . . n− 3n − 2] = γ7(D).

To get a sought 11-cycle there should be a path of length six between γ7 and γ1, where γ1 =
τ1 rn = [nn − 1 . . . 2 1]. Let us check this. If n = 5 then the vertices γ7(B) = [4 3 2 5 1], γ7(C) =
[2 5 4 3 1] and γ1 = [5 4 3 2 1] belong to the copy Pn−1(1), and the following cases are possible:

γ7(B)(r2r4)
3 = [2 5 3 4 1] 6= γ1 or γ7(C)(r2r4)

3 = [4 3 5 2 1] 6= γ1,

and

γ7(B)(r4r2)
3 = [5 2 4 3 1] 6= γ1 or γ7(C)(r4r2)

3 = [3 4 2 5 1] 6= γ1.

Hence, a path of length five does not occur between γ7 and γ1.
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If n = 7 the vertices γ7(A) = [4 3 2 7 6 5 1] and γ1 = [7 6 5 4 3 2 1] belong to the copy Pn−1(1),
and the following two cases are possible:

γ7(A)(r4 r6)
3 = [3 4 7 2 5 6 1] 6= γ1 or γ7(A)(r6 r4)

3 = [4 3 7 2 5 6 1] 6= γ1.

Again, a path of length five does not occur between γ7 and γ1.
If n > 9, there is a contradiction with an assumption that γ1 and γ7 belong to the copy Pn−1(1).

Thus, a sought cycle cannot occur in this case.

Case (2+ 3+ 6). Suppose that two vertices τ1, τ2 of a sought 11-cycle belong to the first copy,
other three vertices π1, π2, π3 belong to the second copy, and remaining six vertices γ1, γ2, γ3, γ4,
γ5, γ6 belong to the third copy. Let π1 = τ2rn, π3 = γ6rn, τ1 = γ1rn, then γ1 and γ6 should belong
to Pn−1(1). Taking into account similar reasoning used in the proof of Theorem 4, Case (2+ 3+5),
one can conclude that there are four ways to reach γ6 by a path of length five from τ1 = In such
that we have:

γ6 =























[n− 3n− 6n − 7 . . . 2 1n − 2n − 1nn− 5n− 4] = γ6(A) or

[n− 1n− 4 . . . 3 2 1nn − 3n− 2] = γ6(B) or

[n− 3nn− 1n− 4 . . . 3 2 1n − 2] = γ6(C) or

[n− 1n 1n− 2 . . . 3 2] = γ6(D).

To get a sought 11-cycle there should be a path of length five between γ6 and γ1, where γ1 =
τ1 rn = [nn−1 . . . 2 1]. Let us check this. If n = 5 the vertices γ6(A) = [2 4 5 3 1] and γ1 = [5 4 3 2 1]
belong to the copy Pn−1(1), and the following cases are possible:

γ6(A)(rn−3 rn−1)
2 rn−3 = [2 4 5 3 1](r2 r4)

2r2 = [2 4 3 5 1] 6= γ1

or

γ6(A)(rn−1 rn−3)
2 rn−1 = [2 4 5 3 1](r4 r2)

2r4 = [5 3 2 4 1] 6= γ1.

Hence, a path of length five does not occur between γ6 and γ1.

If n > 7, there is a contradiction with an assumption that γ1 and γ6 belong to the copy Pn−1(1).
Thus, a sought cycle cannot occur in this case.

Case (2+ 4+ 5). Suppose that two vertices τ1, τ2 of a sought 11-cycle belong to the first
copy, other four vertices π1, π2, π3, π4 belong to the second copy, and remaining five vertices γ1, γ2,
γ3, γ4, γ5 belong to the third copy. Let π1 = τ1rn, π4 = γ5rn, τ2 = γ1rn, then γ1 and γ5 should
belong to either Pn−1(n− 1) or Pn−1(n− 3), since either γ1 = τ1rn−1rn or γ1 = τ1rn−3rn, where:

γ1 =

{

[n 1 2 . . . n− 2n − 1] = γ1(A) or

[nn− 1n− 2 1 2 . . . n− 4n− 3] = γ1(B).
(2.30)

By the same reasoning used in the proof of Theorem 4, Case (2 + 4+ 4), one can see that there
are two ways to reach γ5 by a path of length five from τ1 = In such that we have:

γ5 =

{

[1 4 5 2 3nn − 1 . . . 7 6] = γ5(C) or

[1n− 2 . . . 3 2n − 1n] = γ5(D).
(2.31)

To get a sought 11-cycle there should be a path of length four between γ1 and γ5. Let us check
this. If n = 5 or n > 11, there is a contradiction with an assumption that both γ1 and γ5 belong to
either Pn−1(n− 1) or Pn−1(n− 3). If n = 7 then by (2.30) and (2.31) we have γ1(A) = [7 1 2 3 4 5 6]
and γ5(C) = [1 4 5 2 3 7 6], but there is no path of length four between them, since we have either

γ5(C)(r4 r6)
2 = [2 5 7 3 1 4 6] 6= γ1(A) or γ5(C)(r6 r4)

2 = [3 7 4 1 2 5 6] 6= γ1(A).
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If n = 9 then by (2.30) and (2.31) we have γ1(B) = [9 8 7 1 2 3 4 5 6] and γ5(C) = [1 4 5 2 3 9 8 7 6],
but there is no path of length four between them, since we have either

γ5(C)(r6 r8)
2 = [9 3 7 8 1 4 5 2 6] 6= γ1(A) or γ5(C)(r8 r6)

2 = [3 9 8 7 1 4 2 5 6] 6= γ1(A).

Thus, a sought cycle cannot occur in this case.

Case (3+ 3+ 5). Suppose that three vertices τ1, τ2, τ3 of a sought 11-cycle belong to the
first copy, other three vertices π1, π2, π3 belong to the second copy, and remaining five vertices
γ1, γ2, γ3, γ4, γ5 belong to the third copy. Let π1 = τ1rn = [nn − 1 . . . 2 1], π3 = γ5rn, τ3 = γ1rn,
then γ1 and γ5 should belong to either Pn−1(n− 1) or Pn−1(3), since either γ1 = τ1 rn−3 rn−1 rn or
γ1 = τ1 rn−1 rn−3 rn, where

γ1 =

{

[nn− 3n− 4 . . . 2 1n − 2n− 1] = γ1(A) or

[n 1 2n − 1n− 2 . . . 4 3] = γ1(B).
(2.32)

Taking into account the same arguments as we used in the proof of Theorem 4, Case (3 + 3 + 4),
one can conclude that there are two ways to reach γ5 by a path of length five from τ1 = In such
that we have:

γ5 =

{

[1 4 5 . . . n− 1n 3 2] = γ5(C) or

[1nn− 1 2 3 . . . n− 3n− 2] = γ5(D).
(2.33)

To get a sought 11-cycle there should be a path of length four between γ1 and γ5. Let us check
this. If n = 5 then by (2.32) and (2.33) we have γ1(B) = [5 1 2 4 3] and γ5(D) = [1 5 4 2 3], but there
is no path of length four between them, since we have either

γ5(D)(r2 r4)
2 = [5 1 2 4 3] 6= γ1(B) or γ5(D)(r4 r2)

2 = [5 1 2 4 3] 6= γ1(B).

Hence, a path of length four does not occur between γ5 and γ1. However, let us note that in this
case we have a cycle of length eight given by the canonical form C8 = (r4 r2)

4 obtained from (2.9)
by putting k = 4, j = 3, i = 2.

If n > 7 then by (2.32) and (2.33) there is a contradiction with an assumption that both γ1 and
γ5 belong to either Pn−1(n− 1) or Pn−1(3). Hence, a sought cycle cannot occur in this case.

Case (3+ 4+ 4). Suppose that three vertices τ1, τ2, τ3 of a sought 11-cycle belong to the
first copy, other four vertices π1, π2, π3, π4 belong to the second copy, and remaining four vertices
γ1, γ2, γ3, γ4 belong to the third copy. Let π1 = τ1rn = [nn − 1 . . . 2 1], π4 = γ4rn, τ3 = γ4rn,
then γ1 and γ4 should belong to either Pn−1(n − 1) or Pn−1(3), since either γ1 = τ1rn−1rn−3rn or
γ1 = τ1rn−3rn−1rn, where

γ1 =

{

[nn− 3n− 4 . . . 2 1n − 2n− 1] = γ1(A) or

[n 1 2n − 1n− 2 . . . 4 3] = γ1(B).
(2.34)

On the other hand, it is obvious that there are two ways to get a path of length five from τ1 to γ5:

γ4 =

{

τ1 rn rn−3 rn−1 rn−3 rn = [1 4 5 2 3nn − 1 . . . 7 6] = γ4(C) or

τ1 rn rn−1 rn−3 rn−1 rn = [1n− 2 . . . 3 2n − 1n] = γ4(D).
(2.35)

To get a sought 11-cycle there should be a path of length four between γ1 and γ4. Let us check
this. If n = 5 then by (2.34) and (2.35) we have γ1(B) = [5 1 2 4 3] and γ4(C) = [1 4 5 2 3], but there
is no path of length three between them, since we have either

γ4(C) r2 r4 r2 = [5 2 1 4 3] 6= γ1(B) or γ4(C) r4 r2 r4 = [1 4 2 5 3] 6= γ1(B).

Hence, a path of length three does not occur between γ4 and γ1.
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If n = 7 then by (2.34) and (2.35) we have γ1(A) = [7 4 3 2 1 5 6] and γ4(C) = [1 4 5 2 3 7 6], but
there is no path of length three between them, since we have either

γ4(C) r4 r6 r4 = [4 1 3 7 5 2 6] 6= γ1(A) or γ4(C) r6 r4 r6 = [1 4 7 3 2 5 6] 6= γ1(A).

Again, a path of length three does not occur between γ4 and γ1.
If n > 9 then there is a contradiction with an assumption that both γ1 and γ4 belong to either

Pn−1(n− 1) or Pn−1(3). Hence, a sought cycle cannot occur in this case.

Case 3: 11-cycle within Pn has vertices from four copies of Pn−1.

There are three possible situations in this case.

Case (2+ 2+ 2+ 5). Suppose that two vertices π1, π2 of a sought 11-cycle belong to the first
copy, two vertices τ1, τ2 belong to the second copy, two vertices γ1, γ2 belong to the third copy
and remaining five vertices σ1, σ2, σ3, σ4, σ5 belong to the fourth copy. Let τ1 = γ1rn, γ2 = σ1rn,
σ5 = π2rn and π1 = τ2rn, then σ1 and σ5 should belong to either Pn−1(2) or Pn−1(4), since either
σ1 = τ1rnrn−1rn or σ1 = τ1rnrn−3rn where

σ1 =

{

[1nn− 1n − 2 . . . 3 2] = σ1(A) or

[1 2 3nn − 1 . . . 5 4] = σ1(B).
(2.36)

Taking into account the same arguments as we used in the proof of Theorem 4, Case (2+2+2+4),
one can conclude that there are four ways to reach σ5 by a path of length four from τ1 = In such
that we have:

σ5 =























[n− 3n− 4n− 5nn− 1n − 2 1 2 . . . n− 7n− 6] = σ5(C) or

[n− 1n− 2n− 3n 1 2 . . . n− 5n− 4] = σ5(D) or

[n− 3nn− 1n− 2 1 2 . . . n− 5n− 4] = σ5(E) or

[n− 1n 1 2 . . . n− 3n− 2] = σ5(F ).

(2.37)

To get a sought 11-cycle there should be a path of length four between σ1 and σ5. Let us check
this. If n = 5 then by (2.36) we have σ1(B) = [1 2 3 5 4], and σ5(C) = In(rn−3 rn)

2 = [2 1 3 5 4], but
there is no path of length four between them, since we have either

σ5(C)(r2 r4)
2 = [1 2 5 3 4] 6= σ1(B) or σ5(C)(r4 r2)

2 = [2 1 5 3 4] 6= σ1(B).

If n > 7 then by (2.36) and (2.37) there is a contradiction with an assumption that both σ1 and
σ5 belong to either Pn−1(2) or Pn−1(4). Hence, a sought cycle cannot occur in this case.

Case (2+ 3+ 3+ 3). Suppose that three vertices τ1, τ2, τ3 of a sought 11-cycle belong to the
first copy, three vertices π1, π2, π3 belong to the second copy, three vertices γ1, γ2, γ3 belong to the
third copy and remaining two vertices σ1, σ2 belong to the fourth copy. Let τ1 = π1rn, π3 = σ2rn,
τ3 = γ1rn and γ3 = σ1rn. Taking into account the same arguments as we used in the proof of
Theorem 4, Case (3 + 3 + 4), one can conclude that there are two ways to reach σ2 by a path of
length three from τ1 = In such that we have:

σ2 =

{

τ1 rn rn−3 rn−1 rn−3 rn = [1 4 5 2 3nn − 1 . . . 7 6] = σ2(A) or

τ1 rn rn−1 rn−3 rn−1 rn = [1n − 2 . . . 3 2n − 1n] = σ2(B).
(2.38)

On the other hand, by (2.26) and (2.27), and since γ1 = τ3rn, there are two ways to get paths
of length three from τ1 to γ1 such that either

γ1 = [nn− 3n − 4 . . . 2 1n − 2n − 1] or γ1 = [n 1 2n − 1n− 2 . . . 4 3].

Then there are two ways to get paths of length two from γ1 to γ3 such that the first way is
presented as follows:

γ1rn−3rn−1 = γ3.
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Namely, we get either

γ1 = [nn− 3n− 4 . . . 2 1n− 2n − 1]
rn−3

−−−→ [2 3 . . . n− 4n − 3n 1n − 2n− 1]
rn−1

−−−→

[n− 2 1nn− 3n − 4 . . . 3 2n − 1] = γ3

or

γ1 = [n 1 2n−1n−2 . . . 4 3]
rn−3

−−−→ [6 7 . . . n−2n−1 2 1n 5 4 3]
rn−1

−−−→ [4 5n 1 2n−1n−2 . . . 6 5 3] = γ3.

The second way is presented as follows: γ1rn−1rn−3 = γ3. Namely, we get

γ1 = [nn− 3n − 4 . . . 2 1n − 2n− 1]
rn−1

−−−→ [n− 2 1 2 . . . n− 4n− 3nn− 1]
rn−3

−−−→

[n− 4n− 5 . . . 2 1n − 2n− 3nn− 1] = γ3

or

γ1 = [n 1 2n− 1n− 2 . . . 4 3]
rn−1

−−−→ [4 5 . . . n− 2n− 1 2 1n 3]
rn−3

−−−→ [2n− 1n− 2 . . . 5 4 1n 3] = γ3.

Since σ1 = γ3rn, we get

σ1 =























[n− 1 2 3 . . . n− 4n− 3n 1n − 2] = σ1(C) or

[3 5 6 . . . n− 2n− 1 2 1n 5 4] = σ1(D) or

[n− 1nn− 3n− 2 1 2 . . . n− 5n− 4] = σ1(E) or

[3n 1 4 5 . . . n− 1 2] = σ1(F ).

(2.39)

To get a sought 11-cycle vertices σ1 and σ2 should be adjacent by an internal edge. However,
if n = 5 then by (2.39) and (2.38), we have two non-adjacent vertices σ1(C) = [4 2 5 1 3] and
σ2(A) = [1 4 5 2 3]. If n > 7 then by (2.38) and (2.39) there is a contradiction with an assumption
that σ1 and σ2 belong to the same copy. Hence, a sought cycle cannot occur in this case.

Case (2+ 2+ 3+ 4). There are two subcases due to a sequence of vertex from the copies
forming a cycle: 1) (2,3,4,2); 2) (3,2,4,2).

Subcase 1. Suppose that four vertices π1, π2, π3, π4 of a sought 11-cycle belong to the first copy,
two vertices τ1, τ2 belong to the second copy, three vertices γ1, γ2, γ3 belong to the third copy and
remaining two vertices σ1, σ2 belong to the fourth copy. Taking into account the same arguments
as we used in the proof of Theorem 4, Case (2 + 3 + 2 + 3), one can conclude that there are four
ways to reach σ4 by a path of length five from τ1 = In:

σ4 =























[n− 3n − 6n − 7 . . . 3 2 1n − 2n − 1nn− 5n− 4] = σ4(A) or

[n− 1n − 4n − 5 . . . 3 2 1nn − 3n− 2] = σ4(B) or

[n− 3nn− 1n − 4n − 5 . . . 3 2 1n − 2] = σ4(C) or

[n− 1n 1n − 2n− 3 . . . 3 2] = σ4(D).

On the other hand, there are two ways to reach σ1 by a path of length three from τ1 such that we
have:

σ1 =

{

[1 2 3nn − 1n− 2 . . . 6 5 4] = σ1(E) or

[1nn − 1n − 2 . . . 3 2] = σ1(F ).

As one can see, vertices σ1(F ) and σ4(D) belong to the same copy Pn−1(2). Let us check whether
there is a path of length three between these two vertices. Indeed, there are two ways to get a path
of length three from σ1(F ) to σ4(D). The first way is presented as follows:

σ1rn−1rn−3rn−1 = σ4, (2.40)
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where

σ1(F ) = [1nn − 1 . . . 3 2]
rn−1

−−−→ [3 4 . . . n− 1n 1 2]
rn−3

−−−→ [n− 1n − 2 . . . 4 3n 1 2]
rn−1

−−−→

[1n 3 4 . . . n− 2n − 1 2] 6= σ4(D).

The second way is presented as follows:

σ1rn−3rn−1rn−3 = σ4, (2.41)

where

σ1(F ) = [1nn − 1 . . . 3 2]
rn−3

−−−→ [5 6 . . . n− 1n 1 4 3 2]
rn−1

−−−→ [3 4 1nn − 1 . . . 6 5 2]
rn−3

−−−→

[7 8 . . . n− 1n 1 4 3 6 5 2] 6= σ4(D).

Thus, a sought cycle cannot occur in this subcase.

Subcase 2. Suppose that three vertices τ1, τ2, τ3 of a sought 11-cycle belong to the first copy,
two vertices π1, π2 belong to the second copy, four vertices σ1, σ2, σ3, σ4 belong to the third copy and
remaining two vertices γ1, γ2 belong to the fourth copy. Let π1 = τ3rn, π2 = σ4rn and τ1 = γ1rn,
γ2 = σ1rn. Taking into account the same arguments as we used in the proof of Theorem 4, Case
(3 + 2+ 3+ 2), one can conclude that there are four ways to reach σ4 by a path of length five from
τ1 = In:

σ4 =























[n− 1n− 2 1nn − 3n − 4 . . . 3 2] = σ4(A) or

[3 4 5n 1 2n − 1n − 2 . . . 7 6] = σ4(B) or

[n− 1nn− 3n− 4 . . . 2 1n − 2] = σ4(C) or

[3n 1 2n − 1n− 2 . . . 5 4] = σ4(D).

On the other hand, there are two ways to reach σ1 by a path of length three from τ1 such that we
have:

σ1 =

{

[1 2 3n . . . 6 5 4] = σ1(E) or

[1nn− 1n − 2 . . . 3 2] = σ1(F ).

It is easy to see that vertices σ1(E) and σ4(D) belong to the copy Pn−1(4). However, there is
no path of length three between these two vertices. Indeed, by (2.40) and (2.41), there are two ways
to get a path of length three from σ1(E) to σ4(D) such that either

σ1(E) = [1 2 3n . . . 6 5 4]
rn−1

−−−→ [5 6 . . . n− 1n 3 2 1 4]
rn−3

−−−→ [3nn− 1 . . . 6 5 2 1 4]
rn−1

−−−→

[1 2 5 6 . . . n− 1n 3 4] 6= σ4(D), or

or

σ1(E) = [1 2 3n . . . 6 5 4]
rn−3

−−−→ [7 8 . . . n− 1n 3 2 1 6 5 4]
rn−1

−−−→ [5 6 1 2 3nn − 1 . . . 8 7 4]
rn−3

−−−→

[9 10 . . . n− 1n 3 2 1 6 5 8 7 4] 6= σ4(D).

Hence, there is no path of length three between these two vertices.

One can also see that vertices σ1(F ) and σ4(A) belong to the copy Pn−1(2). Let us check whether
there is a path of length three between these two vertices. By (2.40) and (2.41), there are two ways
to get a path of length three from σ1(F ) to σ4(A) such as either

σ1(F ) = [1nn − 1 . . . 3 2]
rn−1

−−−→ [3 4 . . . n− 1n 1 2]
rn−3

−−−→ [n− 1n − 2 . . . 4 3n 1 2]
rn−1

−−−→

[1n 3 4 . . . n− 2n− 1 2] 6= σ4(A),
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or

σ1(F ) = [1nn − 1 . . . 3 2]
rn−3

−−−→ [5 6 . . . n− 1n 1 4 3 2]
rn−1

−−−→ [3 4 1nn − 1 . . . 6 5 2]
rn−3

−−−→

[7 8 . . . n− 1n 1 4 3 6 5 2] 6= σ4(A).

Thus, a sought cycle cannot occur in this subcase.

Case 4: 11-cycle within Pn has vertices from five copies of Pn−1.

There is the only possible situation in this case.

Case (2+ 2+ 2+ 2+ 3). Suppose that two vertices π1, π2 of a sought 11-cycle belong to the
first copy, two vertices τ1, τ2 belong to the second copy, two vertices γ1, γ2 belong to the third copy,
three vertices δ1, δ2, δ3 belong to the fourth copy and remaining two vertices σ1, σ2 belong to the
fifth copy. Let π1 = τ2rn, π2 = δ3rn, δ1 = σ2rn, σ1 = γ2rn and γ1 = τ1rn. Taking into account the
same arguments as we used in the proof of Theorem 4, Case (2 + 2 + 2 + 2 + 2), one can conclude
that there are four ways to reach δ3 by a path of length four from τ1 = In:

δ3 =























[n− 3n − 4n − 5nn− 1n− 2 1 2 . . . n− 7n− 6] or

[n− 1n − 2n − 3n 1 2 . . . n− 5n − 4] or

[n− 3nn− 1n − 2 1 2 . . . n− 5n − 4] or

[n− 1n 1 2 . . . n− 3n− 2].

(2.42)

On the other hand, there are four ways to reach δ1 by a path of length five from τ1 such that
we have:

δ1 =























[4 5 6 1 2 3nn − 1 . . . 8 7] or

[2 3 4 1nn − 1 . . . 6 5] or

[4 1 2 3nn − 1 . . . 6 5] or

[2 1nn − 1 . . . 4 3].

(2.43)

To get a sought 11-cycle, either δ1 = δ3 rn−3 rn−1 or δ1 = δ3 rn−1 rn−3 should hold. Let us check
this. If n = 5, then by (2.43) and (2.42) we have:

δ1 =























[4 5 3 1 2] = In(rn rn−3)
2 rn or

[2 3 4 1 5] or

[4 1 2 3 5] or

[2 1 5 4 3],

δ3 =























[4 3 2 5 1] or

[4 5 1 2 3] or

[2 1 3 5 4] or

[2 5 4 3 1].

As one can see, there are no path of length two between δ1 and δ3. Thus, a sought 11-cycle can
not occur in this case. If n = 7, then by (2.43) and (2.42) we have:

δ1 =























[4 5 6 1 2 3 7] or

[2 3 4 1 7 6 5] or

[4 1 2 3 7 6 5] or

[2 1 7 6 5 4 3],

δ3 =























[4 3 2 7 6 5 1] or

[6 5 4 7 1 2 3] or

[4 7 6 5 1 2 3] or

[6 7 1 2 3 4 5].

Again, a sought 11-cycle can not occur in this case, since there is no path of length two between δ1

and δ3. By using similar arguments, one can check that for n = 9, 11, 13 there is no 11-cycle in the
graph. For any odd n > 15, there is a contradiction with an assumption that both δ1 and δ3 belong
to the same copy. This complete the proof of the last case of Theorem 5. �
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3. Proof of Theorem 1

It is obvious that any cycle of the cubic pancake graphs P i
n, i = 1, . . . , 5, does belong to the

pancake graph Pn, n > 4, and should be described by one of the canonical formulas from Theorem 2
and Theorem 3. Let us check which cycles appear in P i

n for each i ∈ {1, . . . , 5}.

Case (1.1). Any cycle of P 1
n , n > 4, is formed by prefix-reversals from the set BS1 = {r2,

rn−1, rn}. If n = 4 then by Theorem 2 the prefix-reversals r2 and r3 give 6-cycles of the form (2.1).
For n > 4, by (2.2) there are no 7-cycles in P 1

n , but there are 8-cycles of the form (2.4) when n = 4
and there are 8-cycles of the form (2.9) for n > 5 if we put k = n, i = 2, j = n− 1. The canonical
form in the last case is given by (rn r2)

4 for any n > 5. Hence, the formula (1.1) holds.
Using similar arguments, one can see that any cycle of P 2

n , n > 4, is presented by prefix-reversals
from the set BS2 = {rn−2, rn−1, rn}. If n = 4 then obviously P 2

4 has 6-cycles. If n > 4 then
by (2.2) there are no 7-cycles in P 2

n , however by Theorem 3 there are 8-cycles of the canonical
form (2.3). Indeed, if we put k = n, j = n − 1, i = n − 2 in (2.3) then we have the sequence
rn rn−1 rn−2 rn−1 rn rn−1 rn−2 rn−1. Thus, the formula (1.1) holds in this case.

The same arguments appear for the graph P 3
n , n > 4 is even, whose generating set contains

prefix-reversals r3, rn−2 and rn. It has 6-cycles of the form (2.1) and 8-cycles of the form (2.10) if
n = 4, but it does not have 7-cycles for n > 4. Moreover, for any even n > 6 in P 3

n there are no
6-cycles, but there are 8-cycles of the form (2.9) if we put k = n, i = 3, j = n − 2. The canonical
form of 8-cycles in this case is given by (rn r3)

4 for any even n > 6. Thus, the formula (1.1) holds.

Case (1.2). In the case of the graph P 4
n , n > 5 is odd, its generating elements r3, rn−1 and rn

give 8-cycles of the canonical form (rn rn−1 rn r3)
2 if we put k = n, j = 2 and i = 3 in the form (2.9).

Obviously, there are no 6-cycles in the graph since r2 does not belong to the generating set for any
n > 5. Hence, the formula (1.2) holds for any odd n > 5.

Case (1.3). The generating set BS5 = {rn−3, rn−1, rn} of the graph P 5
n , where n > 5 is

odd, gives the canonical form (r5 r4 r5 r2)
2 of 8-cycles if we put k = 5, j = 2 and i = 2 in the

form (2.9). By Theorem 2 there are no 6-cycles in the graph for any n > 5. By Theorem 3 and by
the characterization of 9-cycles in the pancake graph [6, Theorem 4] there are no 8- and 9-cycles in
P 5
n for any n > 7. By Theorem 4 and Theorem 5 for any n > 7 there are no 10-cycles and 11-cycles in

P 5
n , and the smallest cycle in P 5

n is 12-cycle of the canonical form C12 = (rn rn−1 rn rn−1 rn−3 rn−1)
2.

This complete the proof of Theorem 1. �
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