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FINITE SOLVABLE GROUPS WHOSE GRUENBERG-KEGEL
GRAPHS ARE ISOMORPHIC TO THE PAW 12

A.S. Kondrat’ev, N. A. Minigulov

The Gruenberg—Kegel graph (or the prime graph) of a finite group G is the graph, in which the vertex set
is the set of all prime divisors of the order of G and two different vertices p and g are adjacent if and only if
there exists an element of order pg in G. The paw is the graph on four vertices whose degrees are 1, 2, 2, and 3.
We consider the problem of describing finite groups whose Gruenberg—Kegel graphs are isomorphic as abstract
graphs to the paw. For example, the Gruenberg-Kegel graphs of the groups Ajp and Aut(J2) are isomorphic
as abstract graphs to the paw. In this paper, we describe finite solvable groups whose Gruenberg—Kegel graphs
are isomorphic as abstract graphs to the paw.
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A. C.Kounaparees, H. A. Munurynos. Koneunsie paspeimnumsbie rpymnnbi, rpadsr I'pronbepra —
Kerens koropbix nsomopdHsb! rpady ‘“‘Casnasaiika’.

I'pad I'proubepra — Keresst (umiu rpad mpocThix dmcesr) KoHedHON rpynnbl G — 3T0 rpad, B KOTOPOM Bep-
IMHAMY CJIy?KAT BCE MPOCTBIE MIEJIUTENN MOPAaKa rpynmbl G U Be Pa3/IMYHbIE BEPIIUHBI P U ¢ CMEXKHBI TOTJIA
M TOJILKO TOTrja, Korga G COIEpKUT 3JIEMEHT Topsiika pq. I'pad “Gasanaiika’ — 310 rpad Ha YeTbIpex BepIlu-
Hax, CTEIeHU KOTOPBbIX paBHbI 1, 2, 2 u 3. Mbl paccmaTpuBaeM MPOOJIEMY ONUCAHUS KOHEYHBIX I'DYII, rpadbl
I'pronbepra — Keresisi KoTopbIx Kak abcTpakTHble rpadbl nzoMmopdHbl rpady “Gananaiika’. Hanpumep, rpadbt
T'pron6epra — Keressa rpynn Ajg u Aut(J2) kax abcrpakthbie rpadbl nzomMopdubl rpady “Ganamnaiika’. B sroit
paboTe MBI OIMCBIBA€M KOHEUYHbIE paspemmnmble rpyinbl, rpadbl ['proabepra — Keresst KoTopbix u3oMopdHbL
rpady ‘“Gasianaiika’.
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Introduction

The Gruenberg—Kegel graph (or the prime graph) T'(G) of a finite group G is the graph, in which
the vertex set is the set of all prime divisors of the order of G and two different vertices p and ¢
are adjacent if and only if there exists an element of order pg in G. The paw is the graph on four
vertices whose degrees are 1, 2, 2, and 3.

The first author has described finite groups that have the same Gruenberg—Kegel graphs as the
groups Aut(Jy) (see [4]) and Ajg (see [5]). The Gruenberg—Kegel graphs of all these groups are
isomorphic as abstract graphs to the paw.

We pose the following more general problem: describe finite groups whose Gruenberg—Kegel
graphs are isomorphic as abstract graphs to the paw.

As a part of the solution of this problem, we proved in [6] that if G is a finite non-solvable group
and the graph T'(G) as an abstract graph is isomorphic to the paw, then the quotient group G/S(G)
(where S(G) is the solvable radical of G) is almost simple; we also classified all finite almost simple
groups whose Gruenberg—Kegel graphs as abstract graphs are isomorphic to subgraphs of the paw.

!The work is supported by the Russian Science Foundation (project no. 19-71-10067).
2This paper is based on the results of the 2021 Conference of International Mathematical Centers “Groups
and Graphs, Semigroups and Synchronization”.
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We also classified in [7] finite non-solvable groups G whose Gruenberg—Kegel graphs are isomorphic
as abstract graphs to the paw in the followings two cases:

(1) G has no elements of order 6;
(2) G contains an element of order 6 and the vertex of degree 1 in the graph I'(G) divides |S(G)].

In this paper, we describe finite solvable groups whose Gruenberg-Kegel graphs are isomorphic
as abstract graphs to the paw. Let G be a finite solvable group whose Gruenberg—Kegel graph as
an abstract graph is isomorphic to the paw; i.e., I'(G) has the form

T
: p q
S 9y

where r, s, p, and g are some pairwise distinct primes. By the P. Hall’s theorem [1, Theorem 18.5],
G has a p-complement L; i.e., L is a Hall {r, s, g}-subgroup of G. It is easy to see that the graph I'(L)

is disconnected and has the form (7)‘_2 (()]. By the Gruenberg-Kegel theorem (see Lemma 1 below),
L is either a Frobenius group or a 2-Frobenius group. Set 7 = {p,q}, G = G/O,(G), and G =
G /Oy (G). We prove the following two theorems.

Theorem 1. Let L be a 2-Frobenius group of the form L = Ax (B x (), where A= F (L), and
B = F(BC). Then one of the following statements holds:

(1) Op(G) < O:(G), A is a Sylow g-subgroup of O(G), B is a cyclic Hall {r, s}-subgroup of G,
r and s are odd, C is a cyclic qg-subgroup, and G is isomorphic to a subgroup of Hol(B); in
particular, G /B is an abelian {p, q}-group;

(2) Ox(G) = O,(G), A is a nilpotent Hall {r,s}-subgroup of Oy (G), B is a cyclic Sylow q-sub-

group of G, C is a cyclic ir,s}—subgroup, F(é) = B, and G is isomorphic to a subgroup of
Hol(B); in particular, G/B is an abelian ¢ -group.

Theorem 2. Let L be a Frobenius group of the form L = A x B, where A = F(L). Then one
of the following statements holds:
(1) Op(G) < O:(G), A is a Sylow q-subgroup of Or(G), B is a Hall {r,s}-subgroup of G, and
one of the following statements holds:

(1a) 7 and s are odd, the Sylow subgroups of B are cyclic, B is metacyclic, F(G) = F(B) is
a cyclic subgroup of order divisible by rs, and G is isomorphic to a subgroup of Hol(B);
in particular, G /B is an abelian group;

(1b) it can be assumed that r = 2, A is abelian, a Sylow 2-subgroup By of B is a cyclic or
(generalized) quaternion group, O(B) is the cyclic Sylow s-subgroup of B, and one of
the following statements holds:

(1bi) G = O(G)Ba, 0x(G) = 0-(0(G)), F(O(G)) = O(B), and O(G) is isomorphic to a

subgroup of Hol(O(B)); in particular, O(G)/O(B) is a cyclic p-group;
(1bii) G/O(G) is isomorphic to SL2(3) or SLs(3)2, B = O(B)Bz, p = 3, s > 3, and
statement (1bi) holds for the group O(G)Ba;
(1biii) G/O(G) = B/O(B) is isomorphic to SLa(3) or SLa2(3)2, s=3,p >3, G=0,(G)B
O(G) = 0:(G)O(B), and Ox(G) = Oy 4.4 (0(G));
(2) Ox(G) = O,(G), A is a nilpotent {r,s}-Hall subgroup of G, B is a Sylow q-subgroup of G,

and one of the following statements holds:

(2a) B is a cyclic group, A < Oy (G), F(G) = B, and G is isomorphic to a subgroup of
Hol(B); in particular, G/B is an abelian ¢ -group;
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(2b) B is a (generalized) quaternion group, q = 2, A is an abelian Hall {r, s}-subgroup of
O(G), F(G) = A and either G = O(G)B, or p = 3 and G/O(G) is isomorphic to
SL2(3) or SLa(3) 2.

Remark. It is clear that I'(G) =T'(Z, x L) in Theorems 1 and 2. Using well-known properties
of finite 3-primary solvable Frobenius groups and a criterion of the existence of finite 3-primary
2-Frobenius groups from [9, Proposition 1], we can show that all statements of Theorems 1 and 2
are realizable for some primes r, s, p and q.

1. Preliminaries

Our notation and terminology are mostly standard and can be found in [1-3]. A finite group G
is called a Frobenius group with kernel A and complement B if G = A x B, where the groups A
and B are non-trivial and Cy(b) = 1 for any non-trivial element b of B. A finite group G is
called a 2-Frobenius group if there exist subgroups A, B, and C of G such that G = ABC, A and
AB are normal subgroups of GG, and AB and BC' are Frobenius groups with kernels A and B and
complements B and C| respectively. If G is a group, then the natural semi-direct product G x Aut(QG)
is called the holomorph of G and is denoted by Hol(G).

Let us recall some results, which are used in the proofs of the theorems.

Lemma 1 (the Gruenberg—Kegel theorem, see [8, Theorem Al). If G is a finite group with dis-
connected Gruenberg—Kegel graph, then one of the following statements holds:
(1) G is a Frobenius group;
(2) G is a 2-Frobenius group;

(3) G is an extension of a nilpotent group by a group A, where Inn(P) < A < Aut(P) for a
simple non-abelian group P with disconnected Gruenberg—Kegel graph.

Lemma 2 (see [3, Remark on p. 377]). Let G be a finite group whose Sylow 2-subgroups are
isomorphic to a (generalized) quaternion group, and let G = G/O(G). Then one of the following
statements holds:

(a)

(b)

(¢) G is an extension of the group SLs(q), where q is odd, by a cyclic group whose order is divisible
by 4.

is isomorphic to a Sylow 2-subgroup of G,

| Ql Q

is isomorphic to the group 2-Ar;

2. Proof of Theorem 1

Let L = Ax(BxC) be a 2-Frobenius group, where A = F(L) and B = F(BC). By [9, Lemma 2],
the subgroups B and C' are cyclic. It is clear that |B| is odd.

Suppose that ¢ divides |O(G)|, and Q € Syly,(O(G)). Then O,(G) < Ox(G). By the Hall’s
theorem, we can assume that () < L. Hence 1 # Q = LNO;(G) < L; in particular, Q < A = O,4(L).

If ¢ ¢ w(C), then 7(BC) = {r,s}. But the graph I'(BC') has the form T s ; hence BC' cannot
be a Frobenius group, a contradiction.

Therefore, g € w(C); hence 7(C) = {q}. It follows that w(B) = {r, s}. The subgroup B is a Hall
{r, s}-subgroup of L, and hence of G.

We have Or(G) = 1; hence 1 # F(G) < Ox(G) = Oy, 3(G). But Cx(F(G)) < F(G); hence
F(G) is a cyclic {r, s}-Hall subgroup of G; i. e., F(G) = B. It follows that Q = A, and statement (1)
holds.
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Suppose now that ¢ does not divide |O;(G)|. Then O (G) = O,(G). Since Or(G) = 1, we have
1 # F(G) < Ox(G) = Oy, 53(G). Clearly, L = L; in particular, L is a p-complement in G. Since
F(G) < L, we have F(G) < F(L); hence n(F (L)) C {r,s}.

If ¢ ¢ m(B), then 7(AB) = {r, s}. But the graph I'(AB) has the form s ; hence AB cannot
be a Frobenius group, a contradiction.

Therefore, ¢ € m(B). Hence, B is a cyclic Sylow g-subgroup of G, ¢ > 2, and n(AC) = {r, s}.
We have O,(G) < Oy (G), and 1 # F(G) < Oy, (G) < Oy (G).

Let By € Syly(Oy4(G)). Then we can assume that By is a non-trivial subgroup of B.
By [3, Theorem 6.3.3], Cq(By) < Oy 4(G). Since B is a cyclic g-subgroup of G and B € Cg(DBy),
B = By. Then C’@(E) = B, and hence B = F(G). Therefore, A is a {r, s}-Hall subgroup of Oy (G),
G is isomorphic to a subgroup of Hol(g ), and G / B is an abelian ¢/-group. Therefore, statement (2)
holds.

Theorem 1 is proved.

3. Proof of Theorem 2

Let L = A x B be a Frobenius group, where A = F(L).

Suppose that ¢ divides |O-(G)|, and Q € Syly(O=(G)). Then Q # 1 and O,(G) < O(G). By
the Hall’s theorem, we can assume that Q < L. Hence, 1 # @ = L N O,(G) < L; in particular,
Q < A = Oy(L). Therefore, B is a Hall {r, s}-subgroup of G. By [3, Theorem 10.3.1], the Sylow
subgroups of B are either cyclic or (generalized) quaternion groups. We have O,(G) = 1, and
1 # F(G) < Ox(G) = O 53(G). Hence F(G) < O 3(G) < B. If Q@ < A, then A # 1, and
[F(G),A] = 1, a contradiction. Therefore, Q = A. If 2 € {r, s}, then, by [3, Theorem 10.3.1], the
subgroup A is abelian.

Suppose that r and s are odd. Then Sylow subgroups of B are cyclic and, consequently, F(G)
is a normal cyclic {r, s}-subgroup of G. By [3, Theorem 10.3.1], B is metacyclic and rs divides
|F(G)]. Since Cx(F(G)) = F(G) and Aut(F(G)) is abelian, it follows that G/F(G) is abelian and
G is isomorphic to a subgroup of Hol(F'(G)). Therefore, statement (1a) holds.

Now we can assume that » = 2. A Sylow 2-subgroup By of B is either a cyclic or (generalized)
quaternion group. By the Burnside’s theorem [3, Theorem 7.4.3] and Lemma 2, either G = O(G) Bo,
or G/O(G) = SLy(3), or G/O(G) = SLy(3)2.

Suppose that G = O(G)Bs. Then B = (x) x B, where (x) = BNO(G) is a Sylow s-subgroup of
O(G), and Cp,(x) # 1. It is clear that O(O(G)) = O(G). Arguing as above, we get F(O(G)) =
(), O(G)/(T) is an abelian group, and a group O(G) is isomorphic to subgroup of Hol((Z)), in
particular, O(G)/O(B) is a cyclic p-group. Therefore, statement (1bi) holds.

Now, we can assume that G/O(G) = SLs(3) or SLa(3) 2.

Suppose that B = O(B)Bs. Then p = 3, s > 3, and statement (1b7) holds for the group O(G)Ba.
Therefore, statement (1biz) holds.

Suppose that B # O(B)Bs. Then G/O(G) = B/O(B). Hence, s = 3, p,q > 3, B = Ba(z),
where (z) is a Sylow 3-subgroup of B, Os(B) = Qg, F(B) = O(B) x {x3), and (x3) is a Sylow
3-subgroup of O(G).

If 23 = 1, then 7(O(G)) = {p, q}; hence O(G) = O,(G) and G = O,(G) x B.

Let 2% # 1. Arguing as above, we get O (G) = O,(0(G)), F(O(G)) = (z), and O(G)/(T) is
isomorphic to a subgroup of Aut((z)). But Aut((Z)) is a 2-group; hence O(G) = (T). Therefore,
G = O,(G) x B. Since A is an abelian Sylow g-subgroup of O (G), we have, by [3, Theorem 6.3.3],
Og ,4(0z(G)) = Op(G)A, and hence Or(G) = Op(G)No, (¢)(Q) and Ox(G) = Oy 4,4(0x(G)).
Therefore, statement (1biii) holds.

Suppose now that ¢ does not divide |O(G)|. Then O(G) = O,(G). Since O(G) = 1, we
have 1 # F(G) < O (G) = O{T,s}(@). It is clear that L 2 L; in particular, L is a p-complement
in G. Since F(G) < L, we have F(G) < F(L); hence 7(F(L)) C {r,s}. Therefore, 7(A) C {r,s},
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and ¢ € w(B). Since B is a complement of a Frobenius group, we have m(B) = {q}, and hence
m(A) = {r,s}. So, A is a nilpotent Hall {r, s}-subgroup of G, and B is a Sylow g-subgroup of G.
By [3, Theorem 10.3.1|, B is either a cyclic group or a (generalized) quaternion group.

Let B be a cyclic group. Then, arguing as above, we conclude that A is a Hall {r, s}-subgroup
of Oy (G), the group G = G/O4(G) is isomorphic to a subgroup of Hol(B), and G/B is an abelian
q'-group. Therefore, statement (2a) holds.

Let B be a (generalized) quaternion group. Then ¢ = 2, and, arguing as above, we find that A is
an abelian Hall {r, s}-subgroup of O(G), F(G) = A, and either G = O(G)B or p = 3 and G/O(G)
is isomorphic to SLa(3) or SLa(3)2. Therefore, statement (2b) holds.

Theorem 2 is proved.
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