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FINITE SOLVABLE GROUPS WHOSE GRUENBERG–KEGEL

GRAPHS ARE ISOMORPHIC TO THE PAW 1,2

A. S.Kondrat’ev, N.A. Minigulov

The Gruenberg–Kegel graph (or the prime graph) of a finite group G is the graph, in which the vertex set
is the set of all prime divisors of the order of G and two different vertices p and q are adjacent if and only if
there exists an element of order pq in G. The paw is the graph on four vertices whose degrees are 1, 2, 2, and 3.
We consider the problem of describing finite groups whose Gruenberg–Kegel graphs are isomorphic as abstract
graphs to the paw. For example, the Gruenberg–Kegel graphs of the groups A10 and Aut(J2) are isomorphic
as abstract graphs to the paw. In this paper, we describe finite solvable groups whose Gruenberg–Kegel graphs
are isomorphic as abstract graphs to the paw.
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А. С.Кондратьев, Н.А. Минигулов. Конечные разрешимые группы, графы Грюнберга—

Кегеля которых изоморфны графу “балалайка”.

Граф Грюнберга —Кегеля (или граф простых чисел) конечной группы G — это граф, в котором вер-
шинами служат все простые делители порядка группы G и две различные вершины p и q смежны тогда
и только тогда, когда G содержит элемент порядка pq. Граф “балалайка” — это граф на четырех верши-
нах, степени которых равны 1, 2, 2 и 3. Мы рассматриваем проблему описания конечных групп, графы
Грюнберга — Кегеля которых как абстрактные графы изоморфны графу “балалайка”. Например, графы
Грюнберга — Кегеля групп A10 и Aut(J2) как абстрактные графы изоморфны графу “балалайка”. В этой
работе мы описываем конечные разрешимые группы, графы Грюнберга —Кегеля которых изоморфны
графу “балалайка”.
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Introduction

The Gruenberg–Kegel graph (or the prime graph) Γ(G) of a finite group G is the graph, in which
the vertex set is the set of all prime divisors of the order of G and two different vertices p and q
are adjacent if and only if there exists an element of order pq in G. The paw is the graph on four
vertices whose degrees are 1, 2, 2, and 3.

The first author has described finite groups that have the same Gruenberg–Kegel graphs as the
groups Aut(J2) (see [4]) and A10 (see [5]). The Gruenberg–Kegel graphs of all these groups are
isomorphic as abstract graphs to the paw.

We pose the following more general problem: describe finite groups whose Gruenberg–Kegel
graphs are isomorphic as abstract graphs to the paw.

As a part of the solution of this problem, we proved in [6] that if G is a finite non-solvable group
and the graph Γ(G) as an abstract graph is isomorphic to the paw, then the quotient group G/S(G)
(where S(G) is the solvable radical of G) is almost simple; we also classified all finite almost simple
groups whose Gruenberg–Kegel graphs as abstract graphs are isomorphic to subgraphs of the paw.

1The work is supported by the Russian Science Foundation (project no. 19-71-10067).
2This paper is based on the results of the 2021 Conference of International Mathematical Centers “Groups

and Graphs, Semigroups and Synchronization”.
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We also classified in [7] finite non-solvable groups G whose Gruenberg–Kegel graphs are isomorphic
as abstract graphs to the paw in the followings two cases:

(1) G has no elements of order 6;

(2) G contains an element of order 6 and the vertex of degree 1 in the graph Γ(G) divides |S(G)|.

In this paper, we describe finite solvable groups whose Gruenberg–Kegel graphs are isomorphic
as abstract graphs to the paw. Let G be a finite solvable group whose Gruenberg–Kegel graph as
an abstract graph is isomorphic to the paw; i.e., Γ(G) has the form

❝✚
✚

❝

❩
❩ ❝ ❝

r

s
p q
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where r, s, p, and q are some pairwise distinct primes. By the P. Hall’s theorem [1, Theorem 18.5],
G has a p-complement L; i.e., L is a Hall {r, s, q}-subgroup of G. It is easy to see that the graph Γ(L)

is disconnected and has the form
❝ ❝ ❝

r s q . By the Gruenberg–Kegel theorem (see Lemma 1 below),
L is either a Frobenius group or a 2-Frobenius group. Set π = {p, q}, G = G/Oπ(G), and G̃ =
G/Oq′(G). We prove the following two theorems.

Theorem 1. Let L be a 2-Frobenius group of the form L = A⋊ (B⋊C), where A = F (L), and

B = F (BC). Then one of the following statements holds:

(1) Op(G) < Oπ(G), A is a Sylow q-subgroup of Oπ(G), B is a cyclic Hall {r, s}-subgroup of G,

r and s are odd, C is a cyclic q-subgroup, and G is isomorphic to a subgroup of Hol(B); in

particular, G/B is an abelian {p, q}-group;

(2) Oπ(G) = Op(G), A is a nilpotent Hall {r, s}-subgroup of Oq′(G), B is a cyclic Sylow q-sub-

group of G, C is a cyclic {r, s}-subgroup, F (G̃) = B̃, and G̃ is isomorphic to a subgroup of

Hol(B̃); in particular, G̃/B̃ is an abelian q′-group.

Theorem 2. Let L be a Frobenius group of the form L = A⋊ B, where A = F (L). Then one

of the following statements holds:

(1) Op(G) < Oπ(G), A is a Sylow q-subgroup of Oπ(G), B is a Hall {r, s}-subgroup of G, and

one of the following statements holds:

(1a) r and s are odd, the Sylow subgroups of B are cyclic, B is metacyclic, F (G) = F (B) is

a cyclic subgroup of order divisible by rs, and G is isomorphic to a subgroup of Hol(B);
in particular, G/B is an abelian group;

(1b) it can be assumed that r = 2, A is abelian, a Sylow 2-subgroup B2 of B is a cyclic or

(generalized) quaternion group, O(B) is the cyclic Sylow s-subgroup of B, and one of

the following statements holds:

(1bi) G = O(G)B2, Oπ(G) = Oπ(O(G)), F (O(G)) = O(B), and O(G) is isomorphic to a

subgroup of Hol(O(B)); in particular, O(G)/O(B) is a cyclic p-group;

(1bii) G/O(G) is isomorphic to SL2(3) or SL2(3)
.2, B = O(B)B2, p = 3, s > 3, and

statement (1bi) holds for the group O(G)B2;

(1biii) G/O(G) ∼= B/O(B) is isomorphic to SL2(3) or SL2(3)
.2, s = 3, p > 3, G = Oπ(G)B,

O(G) = Oπ(G)O(B), and Oπ(G) = Oq′,q,q′(Oπ(G));

(2) Oπ(G) = Op(G), A is a nilpotent {r, s}-Hall subgroup of G, B is a Sylow q-subgroup of G,

and one of the following statements holds:

(2a) B is a cyclic group, A ≤ Oq′(G), F (G̃) = B̃, and G̃ is isomorphic to a subgroup of

Hol(B̃); in particular, G̃/B̃ is an abelian q′-group;
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(2b) B is a (generalized) quaternion group, q = 2, A is an abelian Hall {r, s}-subgroup of

O(G), F (G) = A and either G = O(G)B, or p = 3 and G/O(G) is isomorphic to

SL2(3) or SL2(3)
.2.

Remark. It is clear that Γ(G) = Γ(Zp×L) in Theorems 1 and 2. Using well-known properties
of finite 3-primary solvable Frobenius groups and a criterion of the existence of finite 3-primary
2-Frobenius groups from [9, Proposition 1], we can show that all statements of Theorems 1 and 2
are realizable for some primes r, s, p and q.

1. Preliminaries

Our notation and terminology are mostly standard and can be found in [1–3]. A finite group G
is called a Frobenius group with kernel A and complement B if G = A ⋊ B, where the groups A
and B are non-trivial and CA(b) = 1 for any non-trivial element b of B. A finite group G is
called a 2-Frobenius group if there exist subgroups A, B, and C of G such that G = ABC, A and
AB are normal subgroups of G, and AB and BC are Frobenius groups with kernels A and B and
complements B and C, respectively. If G is a group, then the natural semi-direct product G⋊Aut(G)
is called the holomorph of G and is denoted by Hol(G).

Let us recall some results, which are used in the proofs of the theorems.

Lemma 1 (the Gruenberg–Kegel theorem, see [8, Theorem A]). If G is a finite group with dis-

connected Gruenberg–Kegel graph, then one of the following statements holds:

(1) G is a Frobenius group;

(2) G is a 2-Frobenius group;

(3) G is an extension of a nilpotent group by a group A, where Inn(P ) ≤ A ≤ Aut(P ) for a

simple non-abelian group P with disconnected Gruenberg–Kegel graph.

Lemma 2 (see [3, Remark on p. 377]). Let G be a finite group whose Sylow 2-subgroups are

isomorphic to a (generalized) quaternion group, and let G = G/O(G). Then one of the following

statements holds:

(a) G is isomorphic to a Sylow 2-subgroup of G;

(b) G is isomorphic to the group 2 .A7;

(c) G is an extension of the group SL2(q), where q is odd, by a cyclic group whose order is divisible

by 4.

2. Proof of Theorem 1

Let L = A⋊(B⋊C) be a 2-Frobenius group, where A = F (L) and B = F (BC). By [9, Lemma 2],
the subgroups B and C are cyclic. It is clear that |B| is odd.

Suppose that q divides |Oπ(G)|, and Q ∈ Sylq(Oπ(G)). Then Op(G) < Oπ(G). By the Hall’s
theorem, we can assume that Q ≤ L. Hence 1 6= Q = L∩Oπ(G)EL; in particular, Q ≤ A = Oq(L).

If q /∈ π(C), then π(BC) = {r, s}. But the graph Γ(BC) has the form
❝ ❝

r s ; hence BC cannot
be a Frobenius group, a contradiction.

Therefore, q ∈ π(C); hence π(C) = {q}. It follows that π(B) = {r, s}. The subgroup B is a Hall
{r, s}-subgroup of L, and hence of G.

We have Oπ(G) = 1; hence 1 6= F (G) ≤ Oπ′(G) = O{r,s}(G). But CG(F (G)) ≤ F (G); hence

F (G) is a cyclic {r, s}-Hall subgroup of G; i. e., F (G) = B. It follows that Q = A, and statement (1)
holds.
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Suppose now that q does not divide |Oπ(G)|. Then Oπ(G) = Op(G). Since Oπ(G) = 1, we have
1 6= F (G) ≤ Oπ′(G) = O{r,s}(G). Clearly, L ∼= L; in particular, L is a p-complement in G. Since

F (G)E L, we have F (G) ≤ F (L); hence π(F (L)) ⊆ {r, s}.

If q /∈ π(B), then π(AB) = {r, s}. But the graph Γ(AB) has the form
❝ ❝

r s ; hence AB cannot
be a Frobenius group, a contradiction.

Therefore, q ∈ π(B). Hence, B is a cyclic Sylow q-subgroup of G, q > 2, and π(AC) = {r, s}.
We have Op(G) ≤ Oq′(G), and 1 6= F (G) ≤ O{r,s}(G) ≤ Oq′(G).

Let B0 ∈ Sylq(Oq′,q(G)). Then we can assume that B0 is a non-trivial subgroup of B.
By [3, Theorem 6.3.3], CG(B0) ≤ Oq′,q(G). Since B is a cyclic q-subgroup of G and B ∈ CG(B0),

B = B0. Then C
G̃
(B̃) = B̃, and hence B̃ = F (G̃). Therefore, A is a {r, s}-Hall subgroup of Oq′(G),

G̃ is isomorphic to a subgroup of Hol(B̃), and G̃/B̃ is an abelian q′-group. Therefore, statement (2)
holds.

Theorem 1 is proved.

3. Proof of Theorem 2

Let L = A⋊B be a Frobenius group, where A = F (L).

Suppose that q divides |Oπ(G)|, and Q ∈ Sylq(Oπ(G)). Then Q 6= 1 and Op(G) < Oπ(G). By
the Hall’s theorem, we can assume that Q ≤ L. Hence, 1 6= Q = L ∩ Oπ(G) E L; in particular,
Q ≤ A = Oq(L). Therefore, B is a Hall {r, s}-subgroup of G. By [3, Theorem 10.3.1], the Sylow
subgroups of B are either cyclic or (generalized) quaternion groups. We have Oπ(G) = 1, and
1 6= F (G) ≤ Oπ′(G) = O{r,s}(G). Hence F (G) ≤ O{r,s}(G) ≤ B. If Q < A, then A 6= 1, and

[F (G), A] = 1, a contradiction. Therefore, Q = A. If 2 ∈ {r, s}, then, by [3, Theorem 10.3.1], the
subgroup A is abelian.

Suppose that r and s are odd. Then Sylow subgroups of B are cyclic and, consequently, F (G)
is a normal cyclic {r, s}-subgroup of G. By [3, Theorem 10.3.1], B is metacyclic and rs divides
|F (G)|. Since CG(F (G)) = F (G) and Aut(F (G)) is abelian, it follows that G/F (G) is abelian and
G is isomorphic to a subgroup of Hol(F (G)). Therefore, statement (1a) holds.

Now we can assume that r = 2. A Sylow 2-subgroup B2 of B is either a cyclic or (generalized)
quaternion group. By the Burnside’s theorem [3, Theorem 7.4.3] and Lemma 2, either G = O(G)B2,
or G/O(G) ∼= SL2(3), or G/O(G) ∼= SL2(3)

.2.

Suppose that G = O(G)B2. Then B = 〈x〉⋊B2, where 〈x〉 = B∩O(G) is a Sylow s-subgroup of
O(G), and CB2

(x) 6= 1. It is clear that Oπ(O(G)) = Oπ(G). Arguing as above, we get F (O(G)) =
〈x〉, O(G)/〈x〉 is an abelian group, and a group O(G) is isomorphic to subgroup of Hol(〈x〉), in
particular, O(G)/O(B) is a cyclic p-group. Therefore, statement (1bi) holds.

Now, we can assume that G/O(G) ∼= SL2(3) or SL2(3)
.2.

Suppose that B = O(B)B2. Then p = 3, s > 3, and statement (1bi) holds for the group O(G)B2.
Therefore, statement (1bii) holds.

Suppose that B 6= O(B)B2. Then G/O(G) ∼= B/O(B). Hence, s = 3, p, q > 3, B = B2〈x〉,
where 〈x〉 is a Sylow 3-subgroup of B, O2(B) ∼= Q8, F (B) = O2(B) × 〈x3〉, and 〈x3〉 is a Sylow
3-subgroup of O(G).

If x3 = 1, then π(O(G)) = {p, q}; hence O(G) = Oπ(G) and G = Oπ(G) ⋊B.

Let x3 6= 1. Arguing as above, we get Oπ(G) = Oπ(O(G)), F (O(G)) = 〈x〉, and O(G)/〈x〉 is
isomorphic to a subgroup of Aut(〈x〉). But Aut(〈x〉) is a 2-group; hence O(G) = 〈x〉. Therefore,
G = Oπ(G)⋊B. Since A is an abelian Sylow q-subgroup of Oπ(G), we have, by [3, Theorem 6.3.3],
Oq′,q(Oπ(G)) = Op(G)A, and hence Oπ(G) = Op(G)NOπ(G)(Q) and Oπ(G) = Oq′,q,q′(Oπ(G)).
Therefore, statement (1biii) holds.

Suppose now that q does not divide |Oπ(G)|. Then Oπ(G) = Op(G). Since Oπ(G) = 1, we
have 1 6= F (G) ≤ Oπ′(G) = O{r,s}(G). It is clear that L ∼= L; in particular, L is a p-complement

in G. Since F (G) E L, we have F (G) ≤ F (L); hence π(F (L)) ⊆ {r, s}. Therefore, π(A) ⊆ {r, s},
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and q ∈ π(B). Since B is a complement of a Frobenius group, we have π(B) = {q}, and hence
π(A) = {r, s}. So, A is a nilpotent Hall {r, s}-subgroup of G, and B is a Sylow q-subgroup of G.
By [3, Theorem 10.3.1], B is either a cyclic group or a (generalized) quaternion group.

Let B be a cyclic group. Then, arguing as above, we conclude that A is a Hall {r, s}-subgroup
of Oq′(G), the group G̃ = G/Oq′(G) is isomorphic to a subgroup of Hol(B̃), and G̃/B̃ is an abelian
q′-group. Therefore, statement (2a) holds.

Let B be a (generalized) quaternion group. Then q = 2, and, arguing as above, we find that A is
an abelian Hall {r, s}-subgroup of O(G), F (G) = A, and either G = O(G)B or p = 3 and G/O(G)
is isomorphic to SL2(3) or SL2(3)

.2. Therefore, statement (2b) holds.
Theorem 2 is proved.
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