Inverse Problems in the Class of Distance-Regular Graphs of Diameter 4

A. A. Makhnev ${ }^{1,2, *}$ and D. V. Paduchikh ${ }^{1, * *}$
Received October 14, 2021; revised January 19, 2022; accepted January 24, 2022

Abstract

For a distance-regular graph Γ of diameter 4, the graph $\Delta=\Gamma_{1,2}$ can be strongly regular. In this case, the graph $\Gamma_{3,4}$ is strongly regular and complementary to Δ. Finding the intersection array of Γ from the parameters of $\Gamma_{3,4}$ is an inverse problem. In the present paper, the inverse problem is solved in the case of an antipodal graph Γ of diameter 4. In this case, $r=2$ and $\Gamma_{3,4}$ is a strongly regular graph without triangles. Further, Γ is an AT4 (p, q, r)-graph only in the case $q=p+2$ and $r=2$. Earlier the authors proved that an $A T 4(p, p+2,2)$-graph does not exist. A Krein graph is a strongly regular graph without triangles for which the equality in the Krein bound is attained (equivalently, $q_{22}^{2}=0$). A Krein graph $\operatorname{Kre}(r)$ with the second eigenvalue r has parameters $\left(\left(r^{2}+3 r\right)^{2}, r^{3}+3 r^{2}+r, 0, r^{2}+r\right)$. For the graph $\operatorname{Kre}(r)$, the antineighborhood of a vertex is strongly regular with parameters $\left(\left(r^{2}+2 r-1\right)\left(r^{2}+3 r+1\right), r^{3}+2 r^{2}, 0, r^{2}\right)$ and the intersection of the antineighborhoods of two adjacent vertices is strongly regularly with parameters $\left(\left(r^{2}+2 r\right)\left(r^{2}+2 r-1\right), r^{3}+r^{2}-r\right.$, $\left.0, r^{2}-r\right)$. Let Γ be an antipodal graph of diameter 4, and let $\Delta=\Gamma_{3,4}$ be a strongly regular graph without triangles. In this paper it is proved that Δ cannot be a graph with parameters $\left(\left(r^{2}+2 r-1\right)\left(r^{2}+3 r+1\right), r^{3}+2 r^{2}, 0, r^{2}\right)$, and if Δ is a graph with parameters $\left(\left(r^{2}+2 r\right)\left(r^{2}+\right.\right.$ $\left.2 r-1), r^{3}+r^{2}-r, 0, r^{2}-r\right)$, then $r>3$. It is proved that a distance-regular graph with intersection array $\{32,27,12(r-1) / r, 1 ; 1,12 / r, 27,32\}$ exists only for $r=3$, and, for a graph with array $\{96,75,32(r-1) / r, 1 ; 1,32 / r, 75,96\}$, we have $r=2$.

Keywords: distance-regular graph, antipodal graph, graph Γ with strongly regular graph $\Gamma i, j$.
DOI: 10.1134/S0081543822030105

[^0]
[^0]: ${ }^{1}$ Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia
 ${ }^{2}$ Ural Federal University, Yekaterinburg, 620000 Russia
 e-mail: *makhnev@imm.uran.ru, **dpaduchikh@gmail.com

