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ENUMERATION TECHNIQUES ON CYCLIC SCHUR RINGS1

Andrew Misseldine

Any Schur ring is uniquely determined by a partition of the elements of the group. In this paper we present

a general technique for enumerating Schur rings over cyclic groups using traditional Schur rings. We also survey

recent efforts to enumerate Schur rings over cyclic groups of specific orders.
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Э.Мисселдин. О подсчете числа колец Шура над циклическими группами.

Любое кольцо Шура однозначно определяется разбиением группы. В статье предложен общий ме-

тод подсчета числа колец Шура над циклическими группами, использующий традиционные кольца Шу-

ра. Приведен обзор недавних исследований, посвященных подсчету числа колец Шура над циклическими

группами некоторых порядков.
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1. Introduction

The Bell numbers B(n) count the number of ways a finite set X can be partitioned when
|X| = n. Without the loss of generality, we may assume X = {0, 1, 2, . . . , n − 1}. Hence, the
Bell numbers count the number of set partitions of X. The first few Bell numbers are given as
1, 1, 2, 5, 15, 52, 203, 877, 4140, . . .2 Could a similar counting problem be considered for finite groups?
That is, could one construct a sequence of numbers which enumerate the group partitions of a finite
group G when |G| = n? We would only want to count partitions that in some way “respect” the group
structure. Some examples of group-theoretic partitions could be conjugacy classes, automorphism
classes, inverse pairs, (double) cosets, or membership of a subgroup, to name a few possibilities. All of
these examples of group-theoretic partitions are, in fact, examples of Schur rings (see Definition 1.1).

Schur rings were first introduced by Wielandt [33] as a tool to study permutation groups and
are based upon a method originated by Schur [30]. See [34] for a detailed treatment of this “Method
of Schur.” As Schur rings themselves are subrings of groups algebras first considered by Schur, their
name is fitting. On the other hand, Schur rings are constructed using partitions of the group which
themselves satisfy the group axioms, that is, Schur partitions are partitions of a group which are
closed under identity, inverses, and multiplication. Hence, Schur partitions, that is, those partitions
of a group which afford a Schur ring, are the natural candidate to be the group-theoretic partition
we seek to count in this paper.

In the category of sets, the only invariant of a set is its cardinality. Hence, the Bell numbers are
indexed by natural numbers. Our counting of Schur rings over a group should likewise be indexed by
its isomorphism type. The family of cyclic groups is a natural place to begin this enumeration since
the set X can always be given the structure of a cyclic group. Let Zn = 〈z〉 denote the cyclic group
of order n, written multiplicatively. Schur rings over cyclic groups have been of great interest for

1This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics.
2Sequence A000110 in OEIS.
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the last few decades because of their connection to algebraic graph theory (see [23]). Cyclic groups
are also among a small set of group families that currently possess a classification theorem of Schur
rings (see Theorem 2.1). For these reasons, we consider the sequence of numbers Ω(n) which denote
the number of Schur rings over the cyclic group Zn.

We will now establish some notation for this paper. Let G be a finite group, and let Q[G] denote
its rational group algebra. Let L(G) denote the lattice of subgroups of G. For any subset C ⊆ G,
we may identify this subset with an element of the group algebra Q[G], namely,

∑

g∈C g ∈ Q[G].
Such an element is called a simple quantity, and when there is no confusion we will denote simple
quantities by the subsets themselves. Define C∗ := {x−1 | x ∈ C} for all C ⊆ G.

Definition 1.1. Let {C1, C2, . . . , Cr} be a partition of G, and let S be the subspace of Q[G]
spanned by the simple quantities C1, C2, . . . Cr. We say that S is a Schur ring over G if

1. C1 = {1}.
2. For each i, there is a j such that C∗

i = Cj .
3. For each i and j, CiCj =

∑r
k=1 λijkCk, for λijk ∈ N.

The sets C1, C2, . . . , Cr are called the primitive sets of S or the S-classes.

Note that a Schur ring S is uniquely determined by its associated partition of G. We will denote
this partition as D(S).

The first attempt to classify Schur rings began with Schur himself. In this original setting,
the transitivity module of a permutation group G acting on a regular subgroup H is the subspace
of Q[H] spanned by the Ge-orbits, where Ge is the stabilizer of the identity e ∈ H. Transitivity
modules are always Schur rings. Schur conjectured that all Schur rings over H were transitivity
modules for some G ≤ Sym(H). Such a Schur ring is called Schurian, first coined by Pöschel [29],
and a group H is likewise called Schurian if all Schur rings over H are Schurian. Wielandt [34]
disproved this conjecture. As Schur himself mostly worked with cyclic Schur rings, another conjecture
suggested that all cyclic groups were Schurian. This conjecture was likewise disproved by Evdokimov
and Ponomarenko in [7]. Evdokimov, Kovács, and Ponomarenko later classified all Schurian cyclic
groups in [9] as those cyclic groups whose orders3 are pk, pqk, 2pqk, pqr, 2pqr, where p, q, r are distinct
primes. See [10] for a history of efforts made to classify Schurian cyclic and non-cyclic groups.

The first attempt to enumerate Schur rings began with Liskovets and Pöschel [21] who enumerated
wreath-indecomposable Schur rings over the cyclic group of order pn, where p is an odd prime, in
an attempt to count certain circulant graphs. Kovács [16] later solves the more difficult problem
when p = 2. In [22], the author provides recursive formulas to count the number of Schur rings over
a cyclic group of order pn, where p is an arbitrary prime. In [14], Keller, the author, and Sullivan
enumerate all Schur rings over cyclic groups of order pq and 4p, where p and q are distinct odd
primes. In [13], Humphries and Wagner enumerate symmetric Schur ring over cyclic groups and
show these Schur rings are in one-to-one or one-to-two correspondence with central Schur rings of
projective special linear groups. In [35], Ziv-Av enumerates all Schur rings over small finite groups
up to order 63 using computer software.

In this paper, we generalize the enumeration techniques illustrated introduced in [22], as well as
survey the enumerations found in [22] and [14]. Also, using the computer software MAGMA [4], we
enumerate the number of all Schur rings over cyclic groups of orders up to 400 (see Table 1).

In terms of enumerating Schur rings over G, Schurian rings are somewhat problematic because
they depend upon subgroups of Sym(G) which are external to G and do not lead to recursive
methods. Instead, this paper will employ an alternative classification of Schur rings given by Leung
and Man [19; 20], which were coined traditional Schur rings in [3] (see Section 2). In the 1990’s,
Leung, Man, and others (e.g., [18; 24–26]) investigated how cyclic Schur rings could be classified
internally, namely using subgroups and quotients. This internal classification4 of Schur rings better
allows for recursion in our enumeration and will be the foundation of our technique.

3We point out that all the cyclic group examples considered in Section 4 are Schurian by this theorem.
4It should be noted that the classification of Schurian groups does not necessarily inhibit enumeration.
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Table 1: The Number of Schur Rings over Zn

n Ω(n) n Ω(n) n Ω(n) n Ω(n) n Ω(n)
1 1 41 8 81 92 121 21 161 53
2 1 42 188 82 25 122 37 162 1224
3 2 43 8 83 4 123 55 163 10
4 3 44 61 84 1397 124 119 164 121
5 3 45 140 85 60 125 58 165 670
6 7 46 13 86 25 126 2099 166 13
7 4 47 4 87 41 127 12 167 4
8 10 48 1033 88 334 128 2989 168 12494
9 7 49 21 89 8 129 53 169 43
10 10 50 79 90 1581 130 457 170 411
11 4 51 35 91 97 131 8 171 283
12 32 52 91 92 61 132 1397 172 119
13 6 53 6 93 53 133 99 173 6
14 13 54 232 94 13 134 25 174 284
15 21 55 41 95 61 135 854 175 353
16 37 56 334 96 6719 136 442 176 3030
17 5 57 40 97 12 137 8 177 27
18 42 58 19 98 128 138 188 178 25
19 6 59 4 99 177 139 8 179 4
20 47 60 1103 100 563 140 2142 180 17888
21 27 61 12 101 9 141 27 181 18
22 13 62 25 102 243 142 25 182 658
23 4 63 187 103 8 143 81 183 81
24 172 64 657 104 514 144 21451 184 334
25 13 65 67 105 670 145 67 185 100
26 19 66 147 106 19 146 37 186 366
27 25 67 8 107 4 147 289 187 69
28 61 68 77 108 2219 148 135 188 61
29 6 69 27 109 12 149 6 189 1225
30 147 70 281 110 281 150 2124 190 415
31 8 71 8 111 61 151 12 191 8
32 151 72 2311 112 2030 152 496 192 45694
33 27 73 12 113 10 153 238 193 14
34 16 74 28 114 277 154 360 194 37
35 41 75 185 115 41 155 81 195 1142
36 284 76 90 116 91 156 2157 196 904
37 9 77 53 117 291 157 12 197 9
38 19 78 284 118 13 158 25 198 1989
39 41 79 8 119 69 159 41 199 12
40 262 80 1646 120 10130 160 11256 200 4973
201 53 241 20 281 16 321 27 361 43
202 28 242 128 282 188 322 360 362 55
203 81 243 345 283 8 323 103 363 289
204 1863 244 179 284 119 324 15934 364 5147
205 93 245 450 285 997 325 659 365 139
206 25 246 380 286 546 326 31 366 558
207 177 247 153 287 109 327 81 367 8
208 3256 248 658 288 218905 328 694 368 2030

Lang in [17] used the classificiation of Schurian abelian groups in [10] to enumerate supercharacter theories
over groups of the form Zp ×Z2 ×Z2. Hendrickson [12] showed that supercharacter theories of a group are
equivalent to the central Schur rings of that group. Much work of late has been made to classify supercharacter
theories, e.g., [1; 2; 5] which is parallel to these efforts to classify and enumerate Schur rings.



Enumeration Techniques on Cyclic Schur Rings 279

Cont. Table 1

n Ω(n) n Ω(n) n Ω(n) n Ω(n) n Ω(n)
209 79 249 27 289 31 329 53 369 373
210 8339 250 558 290 457 330 8339 370 679
211 16 251 8 291 83 331 16 371 81
212 91 252 23526 292 180 332 61 372 2745
213 53 253 53 293 6 333 442 373 12
214 13 254 37 294 3327 334 13 374 467
215 81 255 1051 295 41 335 81 375 1464
216 26202 256 14044 296 766 336 126762 376 334
217 125 257 9 297 1063 337 20 377 133
218 37 258 366 298 19 338 262 378 20441
219 82 259 153 299 81 339 69 379 16
220 2142 260 3590 300 24672 340 3275 380 3181
221 119 261 275 301 125 341 145 381 79
222 421 262 25 302 37 342 3168 382 25
223 8 263 4 303 61 343 113 383 4
224 13299 264 12494 304 3027 344 658 384 319416
225 2096 265 67 305 133 345 670 385 1318
226 31 266 672 306 2683 346 19 386 43
227 4 267 55 307 12 347 4 387 369
228 2071 268 119 308 2715 348 2157 388 181
229 12 269 6 309 53 349 12 389 6
230 281 270 14283 310 549 350 4128 390 14253
231 839 271 16 311 8 351 1949 391 69
232 514 272 2872 312 20014 352 13299 392 7641
233 8 273 1611 313 16 353 12 393 53
234 3267 274 25 314 37 354 188 394 28
235 41 275 395 315 8717 355 81 395 81
236 61 276 1397 316 119 356 121 396 22162
237 53 277 12 317 6 357 1152 397 18
238 467 278 25 318 284 358 13 398 37
239 8 279 369 319 81 359 4 399 1601
240 107165 280 19935 320 80768 360 257731 400 51694

The general technique of counting Schur rings over cyclic groups comes from the following
basic strategy. By the Fundamental Theorem of Schur Rings over Cyclic Groups proven by Leung
and Man (see Theorem 2.1), all Schur rings over cyclic groups are traditional. The MAGMA code
recursively enumerates all traditional Schur rings over the subquotients of Zn and checks for wedge-

compatibility. Indecomposable Schur rings are classified and wedge-compatiability is considered to
develop recursive relations on the number of Schur rings over subquotients of Zn. From here, wedge
and direct products of Schur rings are considered using this recursion. In regard to proving counting
formulas, a similar approach is taken. As this manuscript is primarily survey in nature, many
details are omitted for the sake of brevity, but great efforts have also been made to include sufficient
details to make this enumeration technique self-contained. The reader should consult the extensive
bibliography for further details.

The author wants to personally thank Stephen P. Humphries for his very appreciated technical
assistance rendered for the enumeration of Z288 and all orders above 300. The author would like
also to thank Brent Kerby whose code in [15] offered inspiration of the code used herein. Finally,
the author wants to thank the anonymous referee whose helpful comments significantly improved
this manuscript.
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2. Traditional Schur Rings

We begin with examples of Schur rings that are important for classifying Schur rings over cyclic
groups.

Given a finite group G, the partition of the group into singletons, that is, {{g} | g ∈ G}, affords
a Schur ring structure called the discrete Schur ring. Note that this is just the group algebra Q[G]
itself. As the coefficient ring will play little role here, we will abuse notation by using G to both
denote the group G and the group ring Q[G], when the context is clear. Another example is the
partition {1, G r 1}. We call this Schur ring the trivial Schur ring and denote it as G0. For any
finite group, the discrete and trivial Schur rings are always available. In the case of Z1 and Z2, they
are one and the same (in fact, there is only one Schur ring over both Z1 and Z2). Otherwise, they
are distinct.

Let Aut(G) be the automorphism group of G, and let H ≤ Aut(G). Then H partitions G
according to the automorphic action of H on G, via the H-orbits. This Schur ring is called an
automorphic Schur ring5 and is denoted GH. Note that the discrete Schur ring is automorphic,
where H = 1. The center of the group algebra, namely Z(Q[G]), is likewise an automorphic Schur
ring associated to the subgroup of inner automorphisms Inn(G).

Let H ⊆ G and let S be a Schur ring over G. We say that H is an S-subset if H is a union of
primitive sets of S. We say H is an S-subgroup if H is both a subgroup of G and an S-subset. Note
that the family of all S-subsets forms a sublattice of the power set of G. Likewise, if L(G) denotes
the lattice of all subgroups of G, then the family of all S-subgroups form a sublattice of L(G).

We say a Schur ring is primitive if the only S-subgroups are 1 and G. The trivial Schur ring is
primitive and all Schur rings over Zp, where p is a prime, are necessarily primitive. Wielandt [34]
showed that these are the only primitive Schur rings over cyclic groups.

For a Schur ring S and an S-subgroup H, let SH := S∩H be the Schur ring over H associated
to the partition of H given by

D(SH) = {C ∈ D(S) | C ⊆ H}.

We say that a Schur ring T is a Schur subring of S if T = SH for some S-subgroup H. As the
subgroups of Zn are uniquely determined by its order, if S is a Schur ring over Zn and H is an
S-subgroup, then S|H| := SH .

For automorphic Schur rings S = GH, the S-subgroups are exactly the H-invariant subgroups
of G, which includes all characteristic subgroups. Hence, if S is an automorphic Schur ring over G
with S-subgroup K, then SK = KH which is necessarily automorphic itself.

For any group homomorphism ϕ : G → H, this map lifts to a map on group algebras ϕ : Q[G] →
Q[H] by the rule ϕ

(
∑

g αgg
)

=
∑

g αgϕ(g) ∈ Q[H]. Let S be a Schur ring over G. If kerϕ is an
S-subgroup, then ϕ(S) is a Schur ring over ϕ(G). In particular, the associated partition of ϕ(S) is

D(ϕ(S)) = {ϕ(C) | C ∈ D(S)}.

If T is a Schur ring over H such that ϕ(G)is a T-subgroup and Tϕ(G) = ϕ(S), then ϕ : S → T

induces a homomorphism between Schur rings. In the case that ϕ : K →֒ G is the natural inclusion
map, then ϕ : SK →֒ S becomes the inclusion map on Schur rings.

Suppose G is a direct product of two groups, say G = H ×K. Let S and T be Schur rings over
H and K, respectively. Then the direct product6 of Schur rings, denoted by S× T, is given by the
partition

D(S× T) = {CD | C ∈ D(S),D ∈ D(T)},

where CD is viewed as a subset of G. By construction, H and K are both S×T-subgroups. In fact,
(S × T)H = S and (S × T)K = T. The direct product is the smallest Schur ring over G with this

5Automorphic Schur ring are also commonly referred to as orbit Schur rings, as was the case in [22].
6These Schur rings are also known as tensor products, as in [31].
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property. The usual group projections π1 : H ×K → H and π2 : H ×K → K induce Schur ring
projections π1 : S× T → S and π2 : S× T → T.

If h ∈ D(S) for some Schur ring S over G, then hC ∈ D(S) for all C ∈ D(S). Likewise, the
collection of singletons in D(S) forms an S-subgroup H of G. Of course, SH = H, that is, SH is
discrete. Furthermore, if G = H ×K and S is a Schur ring over G such that H,K are S-subgroups
and SH is discrete, then S = SH ×SK = H ×SK .7

For a Schur ring S, we say that an S-subgroup K is normal if K E G. Let ϕ : G → G/K be
the natural map. Then we call the Schur ring ϕ(S) the quotient Schur ring of S over G/K and
denote it as S/K.

Conversely, if ϕ : G → H is a group homomorphism and T is a Schur ring over H, then define

ϕ−1(T) := Span{ϕ−1(C) | C ∈ D(T)}.

It is elementary to show that ϕ−1(T) is closed under ∗ and multiplication, but, the class containing
the identity is kerϕ, which, in general, is not 1. As such, we call ϕ−1(T) a pre-Schur ring. Note that
all primitive sets in ϕ−1(T) are unions of cosets of kerϕ.

We say that [K,H] is an S-section if 1 ≤ K ≤ H ≤ G, K E G, and H,K are S-subgroups. We
say that a section [K,H] is proper if 1 < K ≤ H < G, and we say that [K,H] is trivial if K = H.
As all subgroups of Zn are normal and uniquely determined by their orders, we shall denote the
section [Zd,Ze] simply as [d, e].

We say that S is wedge-decomposable if there exists a proper S-section [K,H] such that for
every S-class C either C ⊆ H or C is a union of cosets of K. Otherwise, S is wedge-indecomposable.

Let U = [K,H] be a proper section of G. We say a pair of Schur rings S and T over H and G/K,
respectively, are wedge-compatible if K is an S-subgroup, H/K is a T-subgroup, and S/K = TH/K .
Then the wedge product8 of two wedge-compatible Schur rings S and T, denoted S ∧U T, is given
by the rule S ∧U T := S+ ϕ−1(T), where ϕ : G → G/K is the natural map. Note that

D(S ∧U T) = D(S) ∪
{

ϕ−1(C) ⊆ GrH | C ∈ D(T)
}

.

Note that by construction U is an S∧U T-section, (S∧U T)H = S, and (S∧U T)/K = T. The wedge
product is, in fact, the smallest Schur ring over G with this property. Furthermore, Schur rings over
G can be factored as a wedge product if and only if the Schur ring is wedge-decomposable.

With a trivial section wedge-compatibility is automatic. Thus, if G is any group extension of Q
by N , then we may form the wedge product S ∧[N,N ] T over G, where S and T are any Schur rings
over N and Q, respectively. In this case, the subscript is omitted and the product is denoted simply
as S ∧ T.

Finally, we say that a Schur ring over G is traditional if the Schur ring can be recursively built
using automorphic and trivial Schur rings over sections of G via the operations of direct products
and wedge products. In other words, a Schur ring is traditional if it belongs to one of four Schur ring
families: trivial Schur rings, automorphic Schur rings, direct products, or wedge products. Leung
and Man show in [20] the following important classification of Schur rings over cyclic groups.

Theorem 2.1 (The Fundamental Theorem of Schur Rings over Cyclic Groups). All Schur rings

over the finite9 cyclic group Zn are traditional.

7This fact was proven in [10] in the case of abelian groups, but the commutativity assumption can be
dropped with no loss.

8The wedge product was first introduced by Leung and Man [19]. In [8], Evdokimov and Ponomarenko
independently introduce the similar notion of a (generalized) wreath product.

9In [3], this result is extended to the infinite cyclic group, among others.
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3. Counting Schur Rings

In order to compute Ω(n), we use the above Fundamental Theorem and count the number
of Schur rings of each of the four families of traditional rings, with particular attention on what
conditions cause them to overlap.

For any n, there is exactly one trivial Schur ring. As it is primitive, the trivial Schur rings Z0
n

will never be wedge-decomposable nor factorable as a direct product, since both products require a

proper subgroup which is absent for primitive Schur rings. In the case that n = p, Z0
p = Z

Aut(Zp)
p .

If n is not prime, then elements of different orders in Z0
n are fused together, a feature impossible in

any automorphic Schur ring. Hence, the trivial Schur ring is automorphic if and only if the group
has prime order. Thus, the trivial Schur ring will contribute a single count to Ω(n) and is distinct
from the other three traditional families for composite orders.

Let n = ab be a unitary factorization, that is, gcd(a, b) = 1. The number of direct product Schur
rings over Zn with respect to this factorization will be Ω(a)Ω(b), since each such Schur ring has
the form S× T, where S and T are Schur rings over Za and Zb, respectively. One can enumerate
all direct product Schur rings over Zn by enumerating all unitary factorizations of n. As the direct
product is an associative, commutative operator on groups, a typical inclusion-exclusion argument
is necessary when n has at least three prime divisors. For example, the number of direct product
Schur rings over Zpqr would be Ω(p)Ω(qr) + Ω(q)Ω(pr) + Ω(r)Ω(pq)− 2Ω(p)Ω(q)Ω(r).

Let H and K be groups and let H ≤ Aut(H) and K ≤ Aut(K). If G = H ×K, then we may
naturally view H × K as a subgroup of Aut(G) by the following rule. If σ ∈ H and τ ∈ K, then
define the map σ×τ : H×K → H×K as (h, k)σ×τ = (hσ , kτ ). If follows that S×T is automorphic
if and only if S and T are automorphic.

The automorphic Schur rings over Zn are in Galois correspondence with the subgroups of
Aut(Zn).

10 Let U(n) denote the set of units of the finite ring Zn, that is, integers modulo n.
Thus, U(n) is the set of integers coprime to n. It is clear that Aut(Zn) ∼= U(n) and

U(n) =

r
∏

i=1

U(peii ),

where n =
∏r

i=1 p
ei
i is the prime factorization of n. Hence, counting automorphic Schur rings over

Zn is equivalent to computing |L(U(n))|.

Note, U(n) is cyclic if and only if n = pk or n = 2pk. In this case L(U(n)) decomposes into a
tower of sublattices, which we call layers, where each layer is lattice-isomorphic to U(p) and sits
on top of the previous layer by degree p extensions. Additionally, U(p) is isomorphic to the divisor
lattice associated to p− 1. If x is the number of divisors of p− 1, then the number of automorphic
Schur rings over Zpk or Z2pk is (k − 1)x.

The general problem of enumerating automorphic Schur rings over Zn is much more difficult,
as every abelian group is a subgroup of U(n) for some sufficiently large n. The problem of counting
the number of subgroups of an arbitrary abelian group is a well studied problem in the literature,
for example [27; 28], and [32], which essentially all derive from a theorem of Goursat [11]. Our
consideration of this problem will follow the method of Călugăreanu [6]. We say that two sections
U = [K,H] and U ′ = [K ′,H ′] over G and G′, respectively, are isomorphic, if H/K ∼= H ′/K ′. If
G = H × K, we say a subgroup D is diagonal if D ∈ L(G) r (L(H) × L(K)). As shown in [6],
diagonal subgroups of G = H ×K correspond exactly to automorphisms between isomorphic, non-
trivial sections of the lattices L(H) and L(K). If gcd(|H|, |K|) = 1 then it follows that L(H×K) ∼=
L(H) × L(K). Thus, it suffices to consider the case that H and K are both cyclic p-groups. We
illustrate Călugăreanu’s technique below.

10See Equation (3.1) in [22].
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Example 3.1. In Z4 × Z4 there are 6 diagonal subgroups. To see this, note that the sections
in Z4 are [1, 2], [2, 4], and [1, 4]. The first two sections are isomorphic to Z2. Since there is only one
automorphism over Z2, 1 · 2 · 2 = 4 of the diagonal subgroups arise from the combinations of [1, 2]
and [2, 4]. The last 2 · 1 · 1 = 2 come from there being two automorphisms over Z4 and the single
combination of [1, 4] and itself. Given that |L(Z4)| = 3, this shows that |L(Z4×Z4)| = 32+6 = 15.

Lemma 3.1 [6]. The number of subgroups of Zpk ×Zpℓ is given as

∣

∣L
(

Zpk ×Zpℓ
)
∣

∣ =

min(k,ℓ)
∑

j=0

φ(pj)(k − j + 1)(ℓ − j + 1),

where φ denotes Euler’s totient function.

Note that for Z4 ×Z4, we see that

|L(Z4 ×Z4)| = 1(3)(3) + 1(2)(2) + 2(1)(1) = 15,

which agrees with Example 3.1.
If S is wedge-decomposable with section [K,H], then S is likewise decomposable for the section

[K ′,H], where K ′ E G and K ′ ≤ K. Thus, it is advantageous to choose K to be a minimal normal
subgroup to avoid unnecessary over-counting of the same wedge product that can be formed from
distinct sections. In [22], the section [p, pj] was used, where j was allowed to vary, for this very
reason. For general n, when the subgroup H has multiple prime divisors, there are multiple minimal
subgroup choices for K and an inclusion-exclusion argument is again necessary.

When enumerating direct product Schur rings, it is important to observe that if G = H × K
is a group and S = SH × SK is a direct product Schur ring over G such that SH is wedge-
decomposable, then S is itself wedge-decomposable.11 Hence, it suffices to count only those with
wedge-indecomposable direct factors, as any complete enumeration of wedge products will contain
the rest. The indecomposable Schur rings are necessarily then trivial, automorphic, or direct products
of indecomposable factors. Hence, the trivial and indecomposable automorphic Schur rings will be
the atomic building blocks for all higher Schur rings over cyclic groups.

For Zpk , the indecomposable Schur rings include the trivial ring Z0
pk

and the top-layer automorphic

rings,12 that is, those automorphic Schur rings that correspond to the subgroups of U(p) viewed as a
subgroup of U(pk). To see this, consider the representation ω : Q[Zn] → Q(ζn) afforded by the rule
z 7→ ζn, where ζn is a complex, primitive nth root of unity and Q(ζn) is the associated cyclotomic
field.13 For a Schur ring S, ω(S) is necessarily a subfield of Q(ζn) and, as U(n) is the Galois
group of Q(ζn) over Q, the correspondence between automorphic Schur rings and the subgroups of
U(n) is identical to the Galois correspondence of subfields of Q(ζn) with subgroups of U(n). Note
that14 ω(Z0

n) = Q, ω(ZH
n ) = Q(ζn)

H, and ω(SH ∧S/K) = ω(SH). Likewise, ω(Sm) ⊆ Q(ζm). In
particular, a wedge-decomposable ring cannot map into the top-layer of Q(ζn), those subfields of
Q(ζn) which are not subfields of Q(ζd) for any proper divisor d of n. This implies that those rings
which do map to the top-layer are indecomposable, as claimed.

11This is immediate consequence of [9, Theorem 4.1], but an elementary argument using sections is also
possible allowing for the assumption that G is cyclic to be removed.

12Such Schur rings were considered in [8] using a different approach. In particular, they showed that a
Schur ring over a cyclic group is indecomposable if and only if its radical is trivial. In the case of orbit Schur
rings, it is shown that this occurs exactly when the associated automorphic group’s order is coprime to to p.
Most arguments involving the representation ω in this manuscript could be alternatively argued using this
radical.

13Because of this representation by cyclotomic fields, automorphic Schur rings over a cyclic group are often
called cyclotomic in the literature. See [8; 10; 23].

14See [22, Equations (3.1)–(3.3)]. Direct products were not considered here because Zpk has no such
factorization.
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We can also consider the ω-image of a direct product. Recall that S×T is the compositum ring
of S and T. As such, ω will map S×T onto the compositum field of ω(S) and ω(T) in Q(ζn), that
is,

ω(S× T) = ω(S) ∨ ω(T) ∼= ω(S)⊗Q ω(T). (3.1)

As mentioned above, if S = SH′ ∧[K ′,H′] S/K ′ is wedge-decomposable, then ω(S) = ω(SH′).
If SH′ is itself wedge-decomposable over the section [K ′′,H ′′], then ω(S) = ω(SH′′). As these
groups are finite, this process will eventually terminate, and there exists an S-subgroup H such
that ω(S) = ω(SH) and SH is indecomposable. Let H be the maximal such subgroup. Then
SH = ZH

d ×
∏k

i=1Z
0
di

, where any of the divisors d0, d1, . . . could be 1. This will be the unique,
maximal wedge-indecomposable Schur subring of S, which we call the wedge-core of S. Two Schur
rings with distinct cores are necessarily distinct. If S is itself indecomposable, then it is equal to its
own core. Every Schur ring S over a non-trivial cyclic group will have a non-trivial core as the core
will contain all the Schur subrings over the minimal S-subgroups. We will enumerate the possible
cores of Schur rings to avoid situations when two different wedge decompositions give rise to the
same partition of Zn.

Let Ω(n,S) denote the number of Schur rings over Zn that contain the Schur ring S as its
wedge-core. We let Ω(n, d)15 abbreviate Ω(n,Zd). If S ∧[K,H] T is a wedge product, then it must
be that S/K = TH/K . If we keep S fixed, then T may be any Schur ring over G/K so long as the
Schur subring TH/K is exactly S/K. Of course, if S is an indecomposable Schur ring over Zn, then
Ω(n,S) = 1.

Lemma 3.2. If S is a primitive Schur ring over Zd and d | n, then Ω(n,S) = Ω(n/d).

Proof. If S ∧U T is a Schur ring over Zn with section U = [K,H], then K = H by the
primitivity of S. As this is a trivial section, wedge-compatibility is automatic. Thus, T could be
any Schur ring over Zn/Zd

∼= Zn/d. �

4. Examples of Enumerating Schur Rings over Cyclic Groups

Using the strategies from the previous section, we consider some examples of enumerating Schur
rings over cyclic groups. The first two can be found in [22].

Example 4.1. Let p be an odd prime and let x be the number of divisors of p − 1. Then
Ω(p) = x, as all Schur rings over Zp are automorphic, including the trivial one, and these Schur
rings are in one-to-one correspondence with the divisors of p− 1.

Let n = pk for k > 1. Then the indecomposable Schur rings over Zpk are Z0
pk

and those x-

many top-layer automorphic Schur rings. In [22, Lemma 4.4], we see that for Schur rings S and
T over Zpk whose cores are indecomposable automorphic Schur subrings of the same order pj ,

Ω(pk,S) = Ω(pk,T) = Ω(pk, pj). This equality is based upon identical recursive relations on these
different functions. Note that for every order pj, if Ω(pk,S) = Ω(pk, pj) then there are exactly
x = Ω(p) many options for the core of S, namely the x indecomposable automorphic Schur rings
over Zpj . Hence,

Ω(pk) =
k

∑

j=1

(

Ω(pk,Z0
pj) + xΩ(pk, pj)

)

− Ω(pk, p).

Of course, Ω(pk,Z0
pj ) = Ω(pk−j) and Ω(pk, p) = Ω(pk−1) by Lemma 3.2. Likewise, Ω(pk, pk) = 1, as

observed in the paragraph before Lemma 3.2. Finally, by observing the recursive relation Ω(pk, pj) =

15Note that this notation has a slightly different meaning in [22], for which the present paper generalizes
the situation considered in the former.
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∑k
i=j Ω(p

k−1, pi−1) for 1 < j < k, we may unravel the unravel the equation above into

Ω(pk) = xΩ(pk−1) +

k
∑

j=2

(cj−1x+ 1)Ω(pk−j),

where ck =
1

k + 1

(

2k

k

)

is the kth Catalan number. We illustrate this formula for small powers of p.

Of course, Ω(p) = x. For n = p2,

Ω(p2) = xΩ(p2, p) + Ω(p2,Z0
p2) + xΩ(p2, p2) = xΩ(p) + Ω(1) + x · 1 = x2 + x + 1.

For n = p3,

Ω(p3) = xΩ(p3, p) + Ω(p3,Z0
p2) + xΩ(p3, p2) + Ω(p3,Z0

p3) + xΩ(p3, p3)

= xΩ(p2) + Ω(p) + x(Ω(p2, p) + Ω(p3, p3)) + Ω(1) + x · 1

= x(x2 + x+ 1) + x+ x(Ω(p) + Ω(1)) + 1 + x = x3 + 2x2 + 4x+ 1. �

Example 4.2. Let p = 2. Of course, Ω(2) = 1, namely Z2 itself. Similarly, Ω(4) = 3, namely
Z0
4 , Z2 ∧Z2, and Z4. For k > 2, we note that U(2k) ∼= Z2 ×Z2k−1 . Unlike the odd prime case, this

automorphism group is non-cyclic and contains diagonal subgroups. As such, the number of Schur
rings which have Z2j as its core will be distinct from the number of Schur rings which have Z±

2j
,

the automorphic Schur ring corresponding to the inversion map, as its core. Hence,

Ω(2k) =

k
∑

j=2

Ω(2k,Z0
2j ) + Ω(2k, 4) +

k
∑

j=3

(

Ω(2k, 2j) + 2Ω(2k,Z±
2j
)
)

.

Some of the calculations are similar to the previous case, by virtue of Lemma 3.2, namely: Ω(2k, 2k) =
Ω(2k,Z±

2k
) = 1, Ω(2k,Z0

2j ) = Ω(2k−j), and Ω(2k, 2) = Ω(2k−1), but the remaining recursive relations
are much more complicated, namely:

Ω(2k, 4) = Ω(2k−1)−

k−2
∑

j=1

Ω(2k−2,Z0
2j ), Ω(2k, 2j) =

k−1
∑

i=j−1

Ω(2k−1, 2i),

Ω(2k,Z±
2j
) = Ω(2k−1,Z±

2j−1)+2
k−1
∑

i=j

Ω(2k−1,Z±
2i
), and Ω(2k,Z±

8 ) = Ω(2k−1, 4)+2
k−1
∑

i=3

Ω(2k−1,Z±
2i
).

Unraveling the recursive relations, we have

Ω(2k) =

3
∑

j=1

2jΩ(2k−j)− (ck−1 + sk−1) +

k
∑

j=4

(

cj−1 + sj−1 −

j−3
∑

i=1

(ci + si)
)

Ω(2k−j),

where ck =
1

k + 1

(

2k

k

)

is the kth Catalan number and sk =

k
∑

j=0

1

j + 1

(

2j

j

)(

k + j

2j

)

is the kth

Schröder number. �

The following two examples can be found in [14].
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Example 4.3. Let p and q be distinct primes. For the case n = pq we do not need to
consider any direct products, as they are all automorphic (note all Schur rings over Zp and Zq

are automorphic). As the only proper section over Zpq are trivial, the only wedge products are over
the sections [p, p] and [q, q], which give, by Lemma 3.2, Ω(p)Ω(q) and Ω(q)Ω(p) many Schur rings
respectively. Thus,

Ω(pq) = 2Ω(p)Ω(q) + |L(U(pq))|+ 1.

Let p =
∏n

i=1 r
ki
i + 1 and q =

∏n
i=1 r

ℓi
i + 1, where {r1, r2, . . . , rn} is a list of distinct primes.

Combining the above formula with Lemma 3.1, we have

Ω(pq) =
n
∏

i=1

min(ki,ℓi)
∑

j=0

φ(rji )(ki − j + 1)(ℓi − j + 1) + 2
n
∏

i=1

(ki + 1)(ℓi + 1) + 1,

where φ denotes Euler’s totient function. We illustrate this formula for the cases n = 2p, 3p, 5p. If
p 6= 2 is a prime and x is the number of divisors of p− 1, then

Ω(2p) = 3x+ 1.

If p 6= 3 is a prime such that p = 2ka+ 1, where a is odd, then

Ω(3p) =
(7k + 6

k + 1

)

x+ 1.

If p 6= 5 is a prime such that p = 2ka+ 1, where a is odd, then

Ω(5p) =
(13k + 7

k + 1

)

x+ 1. �

Example 4.4. Let p be an odd prime such that p = 2ka+1, where a is an odd integer and x the
number of divisors of p− 1. For the case n = 4p, the indecomposable automorphic Schur rings will
be in one-to-one correspondence with the subgroups of U(4p) ∼= Z2×Zp−1. To see this, we note that
U(4p) contains exactly two layers lattice-isomorphic to U(p) with some diagonal subgroups sitting
in between the layers. The top-layer subgroups of U(4p) correspond to direct products Z4 × S,
where S is a Schur ring over Zp, with respect to the usual correspondence of automorphic Schur
rings and automorphic subgroups. On the other hand, the direct products of the form Z0

4 ×S are
indecomposable and can be made to correspond the the subgroups of the bottom-layer of U(4p).
Those automorphic Schur rings which correspond to diagonal subgroups of U(4p) necessarily must
be wedge-indecomposable. Hence, if we combine together these three sets of Schur rings, we establish
a one-to-one correspondence between them and the subgroups of U(4p). Therefore,

Ω(4p) = Ω(4p, 2) + xΩ(4p, p) + Ω(4p,Z0
2p) + xΩ(4p, 2p) + Ω(4p,Z0

4 ) + Ω(4p, 4)

+ Ω(4p,Z0
4p) + |L(U(4p))| = Ω(2p) + xΩ(4) + Ω(2) + x(Ω(2p, p) + Ω(2p, 2p) + Ω(4, 2)

+ Ω(4, 4) − Ω(2)) + Ω(p) + (Ω(2p, 2) + xΩ(2p, 2p)) + Ω(1) + |L(U(4p))|

= (3x+1)+3x+1+x(Ω(2)+Ω(1)+Ω(2)+1−1)+x+(Ω(p)+x·1)+1+|L(U(4p))| = 12x+3+|L(U(4p))|.

To count the automorphic Schur rings, we compute

|L(U(4p))| = |L(Z2 ×Z2k)||L(Za)| = (2(k + 1) + k)
( x

k + 1

)

=
3k + 2

k + 1
x.

Therefore,

Ω(4p) =
15k + 14

k + 1
x+ 3. �



Enumeration Techniques on Cyclic Schur Rings 287

Finally, we present a new example to illustrate these enumeration techniques.

Example 4.5. For n = 2p2,

Ω(2p2) = Ω(2p2, 2) + xΩ(2p2, p) + Ω(2p2,Z0
2p) + xΩ(2p2, 2p) + Ω(2p2,Z0

p2)

+ xΩ(2p2, p2) + Ω(2p2,Z0
2p2) + Ω(2p2,Z2 ×Z0

p2) + xΩ(2p2, 2p2)

= Ω(p2) + xΩ(2p) + Ω(p) + x
(

Ω(p2, p) + Ω(p2, p2) + Ω(2p, 2) + xΩ(2p, 2p)− Ω(2p, 2p)
)

+Ω(2) + x
(

Ω(2p, 2) + Ω(2p, 2p)
)

+Ω(1) + x · 1

= (x2+x+1)+x(3x+1)+x+x
(

Ω(p)+Ω(1)+ Ω(p)+xΩ(1)−Ω(p)
)

+1+x(Ω(2)+1)+1+x = 6x2+7x+4.

By a similar computation that is omitted here, we have

Ω(2p3) = 10x3 + 21x2 + 31x+ 6. �

Conclusion

We can extrapolate from the above examples a general strategy for counting Schur rings over
cyclic groups. We begin by identifying the indecomposable Schur rings for all divisors of the order
n. Once this is complete, we proceed to enumerate all wedge products choosing as the left factor
only indecomposable Schur rings and choosing as sections only those of the form [K,H], where K
is the minimal subgroup of the left wedge-factor. This is trivial for primitive Schur rings and the
Principle of Inclusion-Exclusion is necessary when distinct minimal subgroups are present. For every
left factor in S ∧[d,e] T, there are Ω(n/d, π(S)) options for T . The sum of these mutually exclusive
cases gives Ω(n).

This general strategy comes with two major obstacles. First, it requires a strong understanding
of the recursive nature of the function Ω(n,S). While ad hoc arguments are used here to handle
the examples considered herein, the potential complexity of Ω(n,S) is seen clearly in [22]. Second,
it requires we be able to effectively enumerate the indecomposable Schur rings. While primitive
Schur rings are easy to identify for cyclic groups and direct products are indecomposable only if
their direct factors are, the indecomposable automorphic Schur rings are a greater challenge. As we
saw throughout, we can identify the indecomposable automorphic rings using the lattice L(U(n)),
but this lattice becomes increasingly more difficult as the rank of U(n) increases. Călugăreanu’s
technique provides an effective method of counting subgroups of an abelian group of rank 2, but it
becomes far less effective for rank 3 and beyond. An explicit formula for enumerating subgroups of
an abelian groups of rank 3 is fairly recent (see the aforementioned references for details), and, at the
time of writing, any explicit formula beyond rank 3 has yet to be discovered. As such, any explicit
formula for enumerating Schur rings over cyclic groups is unlikely without an explicit formula for
counting subgroups of abelian groups.
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