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COOPERATIVE DIFFERENTIAL GAMES

WITH PARTNER SETS ON NETWORKS1

L.A. Petrosyan, D.Yeung, Y.B.Pankratоva

In the paper, the differential games on networks with partner sets are considered. The payoffs of a given

player depend on his actions and the actions of the players from his partner set. The cooperative version of

the game is proposed, and the special type of characteristic function is introduced. It is proved the constructed

cooperative game is convex. Using the properties of the payoff functions and the constructed characteristic

function, the Shapley Value and τ -value are computed. It is also proved that in this special class of differential

games the Shapley value is time-consistent.
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нерскими множествами на сетях.

Рассматриваются сетевые дифференциальные игры с партнерскими множествами. Выигрыш каждого

игрока зависит от его действий и действий игроков из его партнерского множества. В статье предложена

кооперативная версия игры и введен особый тип характеристической функции. Доказано, что построенная

кооперативная игра является выпуклой. Свойства функций выигрыша и построенной характеристической

функции используются для вычисления вектора Шепли и τ -вектора. Также доказано, что в указанном

классе дифференциальных игр вектор Шепли динамически устойчив.
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Introduction

Differential games on networks are a relatively new class of differential games (Isaacs (1965)[5],
Krasovsky and Subbotin (1974)[6]). It is necessary to mention the papers of Wie (1993)[14], Pai
(2010) [8], Zhang at al. (2018)[19], Meza and Lopez-Barrientos (2016)[7], Petrosyan (2010)[9],
Gao and Pankratova (2017)[3], and the paper of Petrosyan and Yeung (2020)[11] where the new
characteristic function in differential cooperative network game was introduced in a special case when
the payoffs of players depend only upon their actions and actions of neighbours in the network. In
this paper, we consider the case when a player’s payoff depends upon payoffs of players from his
partner set. The rules of the game allow that a player may belong to many partner sets. When
constructing characteristic function, we suppose that left out players can cut connections with
those who decide to form a coalition. This simplifies the computation of characteristic function, the
Shapley Value and τ -value. It is shown that the corresponding cooperative game is convex.

1. Formulation of a Class of Differential Network Games

Consider a class of n-person differential games on network with game horizon [t0, T ]. The players
are connected in a network system. We use N = {1, 2, . . . , n} to denote the set of players in the

1The first author is supported by Russian Science Foundation, the grant “Optimal Behavior in Conflict-
Controlled Systems” (project no. 17-11-01079).
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network. The nodes of the network are used to represent the players from the set N . We also denote
the set of nodes by N and denote the set of all arcs in network N by L. The arcs in L are the
arc (i, j) ∈ L for players i, j ∈ N , i 6= j. For notational convenience, we denote the set of players
connected to player i as K̃(i) = {j : arc(i, j) ∈ L}, for i ∈ N .

We suppose also that a family of subsets M1, . . . ,Mk, . . . ,Ml, Mk ⊂ N , k = 1, . . . , l, of the set
N is given. It is supposed that |Mk| ≥ 2, and for all i ∈ N there exist l ∈ N , such that i ∈ Ml. Also
for each two nodes z1 ∈ N ∩Mk, z2 ∈ N ∩Mk there exist a path connecting z1 and z2 in Mk. The
sets M1, . . . ,Mk, . . . ,Ml are called “partner” sets.

Let xi(τ) ∈ R
m be the state variable of player i ∈ N at time τ , and ui(τ) ∈ U i ⊂ R

k the control
variable of player i ∈ N .

Every player i ∈ N can cut the connection with any other player from the set Mk at any instant
of time.

The state dynamics of the game is

ẋi(τ) = f i(xi(τ), ui(τ)), xi(t0) = xi0, for τ ∈ [t0, T ] and i ∈ N. (1.1)

The function f i(xi, ui) is continuously differentiable in xi and ui.
The payoff function of player i depends upon his state variable, his own control variable and

the state variables of players from the sets Mk to which he belongs.
In particular, the payoff of player i is given as

Hi(x
1
0, . . . , x

n
0 , u

1, . . . , un) =

l
∑

k=1

(

∑

j∈Mk,
Mk∋i

T
∫

t0

hjik(x
i(τ), xj(τ))dτ

)

. (1.2)

The term hjik(x
i(τ), xj(τ)) is the instantaneous gain that player i can obtain through network

links with player j ∈ Mk, Mk ∋ i (note that the pair (i, i) /∈ L). The functions hjik(x
i(τ), xj(τ)),

for j ∈ Mk are non-negative. For notational convenience, we use x(t) to denote the vector (x1(t),
x2(t), · · · , xn(t)).

From formula (1.2) we can see that the payoff of player i is computed as a sum of payoffs which
he gets interacting with players j ∈ Mk (Mk ∋ i) for all subsets Mk containing player i ∈ N .

Since the set N is finite the sum in (1.2) contains a finite number of summands ≤ |N |.

Cooperation and Characteristic Function. To achieve group optimality, the players maximize
their joint payoff

∑

i∈N

l
∑

k=1

(

∑

j∈Mk,
Mk∋i

T
∫

t0

hjik(x
i(τ), xj(τ))dτ

)

(1.3)

subject to dynamics (1.1).
We use x̄(t) = (x̄1(t), x̄2(t), · · · , x̄n(t)) to denote the optimal cooperative trajectory of problem

of maximizing (1.3) subject to (1.1). We let the corresponding optimal cooperative trajectory of
player i be denoted by x̄i(t), for t ∈ [t0, T ] and i ∈ N . The maximized joint cooperative payoff
involving all players can then be expressed as

∑

i∈N

l
∑

k=1

(

∑

j∈Mk,
Mk∋i

T
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

= max
u1,u2,··· ,un

∑

i∈N

l
∑

k=1

(

∑

j∈Mk,
Mk∋i

T
∫

t0

hjik(x
i(τ), xj(τ))dτ

)

subject to dynamics (1.1)
Next, we consider distributing the cooperative payoff to the participating players under an

agreeable scheme. Given that the contributions of an individual player to the joint payoff through
linked players can be diverse, the Shapley (1953) [12] value provides one of the best solutions in
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attributing a fair gain to each player in a complex network. One of the contentious issues in using
the Shapley value is the determination of the worth of subsets of players (characteristic function).

In this section, we present a new formulation of the worth of coalition S ⊂ N (Bulgakova and
Petrosyan (2019) [1]). In computing the values of characteristic function for coalitions, we evaluate
contributions of the players in the process of cooperation and maintain the cooperative strategies
for all players along the cooperative trajectory. In particular, we evaluate the worth of the coalitions
along the cooperative trajectory as

V (S;x0, T − t0) =
∑

i∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

T
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

. (1.4)

Note that the worth of coalition S is measured by the sum of payoffs of the players in the coalition
in the cooperation process with the exclusion of the gains from players outside coalition S. Thus, the
characteristic function reflecting the worth of coalition S in (1.4) is formulated along the cooperative
trajectory x̄(t).

Similarly, the characteristic function at time t ∈ [t0, T ] can be evaluated as

V (S; x̄(t), T − t) =
∑

i∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

T
∫

t

hjik(x̄
i(τ), x̄j(τ))dτ

)

. (1.5)

For simplicity in notation, we denote the gain that player i can obtain through the network link
with player j ∈ Mk as

αk
ij(x̄(t), T − t) =

T
∫

t

hjik(x̄
i(τ), x̄j(τ))dτ, for t ∈ [t0, T ]. (1.6)

Using the notations in (1.6), we can express the worth of coalition S in (1.4) in the start of the
cooperation scheme as

V (S;x0, T − t0) =
∑

i∈S

[

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

αk
ij(x0, T − t0)

)]

, (1.7)

and the worth of coalition S along the cooperative trajectory x̄(t) as

V (S; x̄(t), T − t) =
∑

i∈S

[ l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

αk
ij(x̄(t), T − t)

)]

, for t ∈ [t0, T ]. (1.8)

An important property of the above characteristic function as a measure of the worth of coalition
is given below.

Proposition 1. The characteristic function defined by (1.7) and (1.8) is convex.

Proof. Proof the following inequalities:

V (S1 ∪ S2;x0, T − t0) ≥ V (S1;x0, T − t0) + V (S2;x0, T − t0)− V (S1 ∩ S2;x0, T − t0).



Cooperative Differential Games with Partner Sets on Networks 289

Using (1.7), we have

V (S1 ∪ S2;x0, T − t0) =
∑

i∈S1∪S2,
Mk∋i

l
∑

k=1

(

∑

j∈Mk∩(S1∪S2)

αk
ij(x0, T − t0)

)

=
∑

i∈S1

l
∑

k=1

(

∑

j∈Mk∩S1,
Mk∋i

αk
ij(x0, T − t0)

)

+
∑

i∈S2

l
∑

k=1

(

∑

j∈Mk∩S2,
Mk∋i

αk
ij(x0, T − t0)

)

−
∑

i∈S1∩S2

l
∑

k=1

(

∑

j∈Mk∩(S1∩S2),
Mk∋i

αk
ij(x0, T − t0)

)

+
∑

i∈S1

l
∑

k=1

(

∑

j∈Mk∩S2,
Mk∋i

αk
ij(x0, T − t0)

)

+
∑

i∈S2

l
∑

k=1

(

∑

j∈Mk∩S1,
Mk∋i

αk
ij(x0, T − t0)

)

≥
∑

i∈S1

l
∑

k=1

(

∑

j∈Mk∩S1,
Mk∋i

αk
ij(x0, T − t0)

)

+
∑

i∈S2

l
∑

k=1

(

∑

j∈Mk∩S2,
Mk∋i

αk
ij(x0, T − t0)

)

−
∑

i∈S1∩S2

l
∑

k=1

(

∑

j∈Mk∩(S1∩S2),Mk∋i

αk
ij(x0, T − t0)

)

Hence Proposition 1 follows. �

Similarly, along the cooperative trajectory x̄(t), the following inequalities hold

V (S1∪S2; x̄(t), T −t) ≥ V (S1; x̄(t), T −t)+V (S2; x̄(t), T −t)−V (S1∩S2; x̄(t), T −t), for t ∈ [t0, T ].

The inequalities in Proposition 1 implies that the game is convex, and so are the subgames along
the cooperative trajectory. This also means that the core of the game is not void, and the Shapley
value belongs to the core.

From (1.4), (1.5) we get

V (S;x0, T − t0) =
∑

i∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

t
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

+
∑

i∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

T
∫

t

hjij(x̄(τ), x̄
j(τ))dτ

)

=
∑

i∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

t
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

+ V (S; x̄(t), T − t) (1.9)

The equation (1.9) can be interpreted as time-consistency property of newly introduced charac-
teristic function.

It is necessary to mention that this property of the characteristic function has not been shared
by existing characteristic functions in differential games. As we can see in our case the worth of
coalitions is measured under the process of cooperation instead of under min-max confrontation (Cao
at al. (1963)[2]) or Nash non-cooperative stance. And, any individual player or coalition attempting
to act independently will have the links to other players in the network being cut off.

Because of this players outside S in worst case will cut connection with players from S, and
players from S will get positive payoffs only interacting with other players from S.
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2. Dynamic Shapley Value and τ-value

In this section, we develop a dynamic Shapley value imputation using the defined characteristic
function.

Now, we consider allocating the grand coalition cooperative network gain V (N ;x0, T − t0) to
individual players according to the Shapley value imputation. Player i’s payoff under cooperation
would become

Shi(x0, T − t0) =
∑

S⊂N,

S∋i

(|S| − 1)!(n − |S|)!

n!
·
[

V (S;x0, T − t0)− V (S\{i};x0, T − t0)
]

, for i ∈ N.

Invoking (1.7), in our case, we can obtain the cooperative payoff of player i under the Shapley
value as

Shi(x0, T − t0) =
∑

S⊂N

S∋i

(|S| − 1)!(n − |S|)!

n!
·

{

∑

l∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

T
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

−
∑

l∈S\{i}

l
∑

k=1

(

∑

j∈Mk∩S\{i},
Mk∋i

T
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

}

. (2.1)

However, in a dynamic framework, the agreed upon optimality principle for sharing the gain has
to be maintained throughout the cooperation duration (see Yeung and Petrosyan (2004 and 2016)
[16; 17]) for a dynamically consistent solution. Applying the Shapley value imputation in (2.2) to
any time instance t ∈ [t0, T ], we obtain:

Shi(x̄(t), T − t) =
∑

S⊂N

S∋i

(|S| − 1)!(n − |S|)!

n!
·

{

∑

l∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

T
∫

t

hjik(x̄
j(τ), x̄j(τ))dτ

)

−
∑

l∈S\{i}

l
∑

k=1

(

∑

j∈Mk∩S\{i},
Mk∋i

T
∫

t

hjik(x̄
j(τ), x̄j(τ))dτ

)

}

(2.2)

The Shapley value imputation in (2.1), (2.2) is based on characteristic function evaluates along
the optimal cooperative trajectory and it attributes the contributions of the players under the
optimal cooperation process. Indeed, it can be regarded as optimal trajectory dynamic Shapley
value. In addition, this Shapley value imputation (2.1)–(2.2) fulfils the property of time consistency.

Proposition 2. The Shapley value imputation in (2.1), (2.2) satisfies the time consistency

property.

Proof. By direct computation we get:

Shi(x0, T − t0) =
∑

S⊂N

S∋i

(|S| − 1)!(n − |S|)!

n!
·

{

∑

l∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

t
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

−
∑

l∈S\{i}

l
∑

k=1

(

∑

j∈Mk∩S\{i},
Mk∋i

t
∫

t0

hjik(x̄
i(τ), x̄j(τ))dτ

)

}

+ Shi(x̄(t), T − t) = i ∈ N,
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which exhibits the time consistency property of the Shapley value imputation Shi(x̄(t), T − t), for
t ∈ [t0, T ]. �

This is the first time that a Shapley value measure itself in a dynamic framework fulfils the
property of time consistency (see existing dynamic Shapley value measures which do not share
this property in Gromova (2016) [4], Petrosyan and Zaccour (2003) [10], Yeung (2010) [15], Yeung
and Petrsoyan (2016 and 2018)) [17; 18]. Using this Shapley value formulation, the cooperative
game solution would automatically satisfy the condition of cooperative time consistency (see Yeung
and Petrosyan (2004 and 2016) [16; 17]). Crucial to the analysis is the design of an Imputation
Distribution Procedure (IDP) such that the Shapley imputation (2.1), (2.2) can be realized.

An IDP leading to the realization of the Shapley imputation Shi(x(t), T − t) in (2.1), (2.2) has
to satisfy

T
∫

t0

βi(τ)dτ = Shi(x0, T − t0) and

T
∫

t

βi(τ)dτ = Shi(x̄(t), T − t).

Following Yeung and Petrosyan (2004 and 2016), we obtain

Proposition 3. An imputation distribution procedure (IDP) giving player i ∈ N at time t ∈
[t0, T ] an allotment

βi(t) = −
d

dt
Shi(x̄(t), T − t) =

∑

S⊂N

S∋i

(|S| − 1)!(n − |S|)!

n!
·

{

∑

l∈S

l
∑

k=1

(

∑

j∈Mk∩S,
Mk∋i

hjik(x̄
l(t), x̄j(t))

)

−
∑

l∈S\{i}

l
∑

k=1

(

∑

j∈Mk∩S\{i},
Mk∋i

hjik(x̄
l(t), x̄j(t))

)

}

would lead to the realization of the Shapley value imputation.

Consider now allocating the grand coalition cooperative network gain V (N ;x0, T − t0) to
individual players according to the τ -value imputation [13]. In our case, the τ -value can be computed
according to (2.3) and (2.4)

τi(x0, T − t0) = λ
(

V (N ;x0, T − t0)− V (N\{i};x0, T − t0)
)

+ (1− λ)V
(

{i};x0, T − t0
)

(2.3)

where λ is satisfies

∑

i∈N

(

λ
(

V (N ;x0, T−t0)−V (N\{j};x0, T−t0)
)

+(1−λ)V ({i};x0, T−t0)
)

= V (N ;x0, T−t0). (2.4)

We have

V ({i};x0, T − t0) = 0, (2.5)

since the arc (i, i) is not contained in L.

From (2.4) using (2.5), we get

λ
∑

j∈N

(

V (N ;x0, T − t0)− V (N\{j};x0, T − t0)
)

= V (N ;x0, T − t0),

λ =
V (N ;x0, T − t0)

∑

j∈N

(

V (N ;x0, T − t0)− V (N\{j};x0 , T − t0)
)

.
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And

τi(x0, T − t0) =
V (N ;x0, T − t0)− V (N\{i}, x0, T − t0)

∑

j∈N

(

V (N ;x0, T − t0)− V (N\{j};x0, T − t0)
)

V (N ;x0, T − t0).

In the subgame along the cooperative trajectory

τi(x̄(t), T − t) =
V (N ; x̄(t), T − t)− V (N\{i}; x̄(t), T − t)

∑

j∈N

(

V (N ; x̄(t), T − t)− V (N\{j}; x̄(t), T − t)
)

V (N ; x̄(t), T − t).

The time consistency property of dynamic τ -value can be satisfied if we introduce the imputation
distribution procedure as

βi(t) = −
d

dt
τi(x̄(t), T − t).

3. Examples

To simplify formulas we will denote αk
ij(x0.T − t0) as αk

ij , and introduce following new notation

αk
ij + αk

ji = Ak(i, j),

wicth is equal to the payoff of the pair (i, j), for i ∈ Mk, j ∈ Mk.
The payoff of the pair (i, j) in the group Mk will be

∑

j∈Mk, Mk∋i

Ak(i, j) =
∑

i∈Mk, Mk∋j

Ak(j, i).

The total payoff of the pair (i, j) in the game can be expressed as

n
∑

k=1

(
∑

j∈Mk, Mk∋i

Ak(i, j)) =
n
∑

k=1

∑

i∈Mk, Mk∋j

Ak(j, i) = A(i, j) = A(j, i).

The total payoff of the pair (i, j) in the coalition S is equal to

v(S) =
∑

i∈S, j∈S

A(i, j).

Example 1. Consider the following 4 player network game (see Fig. 1): Let M1 = {1, 2},

1 2 3 4

M1 M2 M3

Fig. 1.

M2 = {1, 2, 3}, M3 = {1, 2, 3, 4} be partner sets.
Using above notations, compute the values of characteristic function
V ({1, 2}) = A1(1, 2) +A2(1, 2) +A3(1, 2) = A(1, 2),
V ({1, 3}) = A2(1, 3) +A3(1, 3) = A(1, 3),
V ({1, 4}) = A3(1, 4) = A(1, 4),
V ({2, 3}) = A2(2, 3) +A3(2, 4) = A(2, 3),
V ({3, 4}) = A3(3, 4) = A(3, 4),
V ({2, 4}) = A3(2, 4) = A(2, 4),
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V ({1, 2, 3}) = A(1, 2) +A(1, 3) +A(2, 3) = V ({N\4}),

V ({1, 2, 4}) = A(1, 2) +A(1, 4) +A(2, 4) = V ({N\3}),

V ({1, 3, 4}) = A(1, 3) +A(1, 4) +A(3, 4) = V ({N\2}),

V ({2, 3, 4}) = A(2, 3) +A(2, 4) +A(3, 4) = V ({N\1}),

V (N) = A(1, 2) +A(1, 3) +A(2, 4) +A(2, 3) +A(2, 4) +A(3, 4).

Using the formula

τi =
V (N)− V (N\{i})

∑

j∈N

(V (N)− V (N\{j}))
V (N),

and computing the term

∑

i

V (N\{i}) = 2(A(2, 3) +A(2, 4) +A(3, 4) +A(1, 3) +A(1, 4) +A(1, 2)) = 2V (N),

we get

τi =
V (N)− V (N\{i})

4V (N)− 2V (N)
V (N) =

V (N)− V (N\{i})

2
,

and

τ1 =
A(1, 2) +A(1, 3) +A(1, 4)

2
, τ2 =

A(1, 2) +A(2, 3) +A(2, 4)

2
,

τ3 =
A(1, 3) +A(2, 4) +A(1, 4)

2
, τ4 =

A(1, 4) +A(2, 4) +A(3, 4)

2
.

Now, compute the Shapley value

Sh1 =
1

12
(A(1, 2) +A(1, 3) +A(1, 2)) +

1

12
(A(1, 2) +A(1, 3) +A(1, 2) +A(1, 4) +A(1, 3) +A(1, 4))

+
1

4
(A(1, 2) +A(1, 3) +A(1, 4)) =

A(1, 2) +A(1, 3) +A(1, 4)

2
.

Acting in the same way and calculating the remaining components of the Shapley value, we can see
that in this example the τ -value coincides with the Shapley value.

Example 2. Consider the following 4 player network game (see Fig. 2):

2

1

43

M1 M2

Fig. 2.

Let M1 = {1, 2} and M2 = {1, 3, 4} be partner sets.
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For this network structure the characteristic function is defined as

V ({1, 2}) = A1(1, 2) = A(1, 2),

V ({1, 3}) = A2(1, 3) = A(1, 3),

V ({1, 4}) = A2(1, 4) = A(1, 4),

V ({2, 3}) = 0,

V ({2, 4}) = 0,

V ({3, 4}) = A2(3, 4) = A(3, 4),

V ({1, 2, 3}) = A1(1, 2) +A2(1, 3) = A(1, 2) +A(1, 3) = V (N\{4}),

V ({1, 2, 4}) = A1(1, 2) +A2(1, 4) = A(1, 2) +A(1, 4) = V (N\{3}),

V {(1, 3, 4}) = A2(1, 3) +A2(1, 4) +A2(3, 4) = A(1, 3) +A(1, 4) +A(3, 4) = V (N\{2}),

V ({2, 3, 4}) = A2(3, 4) = A(3, 4) = V (N\{1}),

V ({1, 2, 3, 4}) = A1(1, 2) +A2(1, 3) +A2(1, 4) +A2(3, 4) = A(1, 2) +A(1, 3) +A(1, 4) +A(3, 4).

Compute τ -value

τ1 =
A(1, 2) +A(1, 3) +A(1, 4)

2
, τ2 =

A(1, 2)

2
, τ3 =

A(1, 3) +A(3, 4)

2
, τ4 =

A(1, 4) +A(3, 4)

2
.

Computing the Shapley value we get the Shapley value coincides with τ -value

τi = Shi, i = 1, 4.

Conclusion

A special type of differential game on network is considered. The new notion of a partner set
is introduced. Two players may belong to a partner set if there is a path connecting them in the
network. One player can be a member of different partner sets. It is supposed that player gets
positive income resulting from the communication with other players from his partner sets. Using
the novel form for measuring the worth of coalitions, in computing the characteristic function, we
evaluate contributions of the players in the process of cooperation and define cooperative strategies
of players along the cooperative trajectory. The explicit formulas for the Shapley value and τ -value
are derived. It is proved that the constructed characteristic function is convex and the main solution
concepts based on this characteristic function (the Shapley value, and τ -value) are time-consistent
(dynamic stable).
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