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ON THE CONVERGENCE OF MINIMIZERS AND MINIMUM VALUES
IN VARIATIONAL PROBLEMS WITH POINTWISE FUNCTIONAL
CONSTRAINTS IN VARIABLE DOMAINS

A. A. Kovalevsky

We consider a sequence of convex integral functionals Fj : Wl’P(QS) — R and a sequence of weakly lower
semicontinuous and, in general, non-integral functionals Gs : Wl’p(ﬂs) — R, where {Qs} is a sequence of
domains in R™ contained in a bounded domain Q@ C R™ (n > 2) and p > 1. Along with this, we consider
a sequence of closed convex sets Vs = {v € WI1P(Qs) : Ms(v) < 0 a.e. in Qs}, where M is a mapping from
lep(Qs) to the set of all functions defined on Q5. We describe conditions under which minimizers and minimum
values of the functionals Fs 4+ G on the sets Vs converge to a minimizer and the minimum value of a functional
on the set V = {v € WhP(Q) : M(v) < 0 ae. in Q}, where M is a mapping from W1P(Q) to the set of
all functions defined on Q. In particular, for our convergence results, we require that the sequence of spaces
WLP(Q,) is strongly connected with the space W1P(Q) and the sequence {Fs} I'-converges to a functional
defined on Wl’P(Q). In so doing, we focus on the conditions on the mappings Ms and M which, along with the
corresponding requirements on the involved domains and functionals, ensure the convergence of solutions of the
considered variational problems. Such conditions have been obtained in our recent work, and, in the present
paper, we advance in studying them.

Keywords: variational problem, integral functional, pointwise functional constraint, minimizer, minimum
value, I'-convergence, strong connectedness, variable domains.

A. A. Kosanesckuii. O CXOAMOCTH MHUHUMHMU3AHTOB U MUWHHUMAJIbHBIX 3HAYEHUI B BapualyoOH-
HBbIX 3aJaYaX C IIOTOYEeYHO d)yHKI_lI/IOHa.HbeIMI/I OrpaHNvYeHUusAMU B II€epEeMEHHbIX obGJjiacTax.

PaccMOTpEHBI MOCIIEIOBATENLHOCTD BBITYKJIBIX HHTErPATbHBIX dyHKImonanos Fs : W1 P(Qs) — R u moce-
JIOBATEJILHOCTD CJIa00 IOJyHEIPEPLIBHBIX CHU3Y U, BOOOIIE TI'OBOPsi, HE MHTErPAJIbHBIX (DYHKINOHAJIOB
Gs : WHP(Qs) — R, tie {Qs} — nocsieioparensrocTs obnacreii B R™, cojep:Kamuxcss B OrPAHHYEHHON 06-
gact Q@ C R™ (n > 2), u p > 1. Hapsiny ¢ 9TUM paccMOTpeHa IOC/IEAOBATEILHOCTD 3aMKHYTBIX BBIILYKJIBIX
muoxkects Vs = {v € WHP(Qs) : Ms(v) <0 m.B. B Qs}, tie Ms — orobpazxkenne W1P(£;) Bo MHOXKECTBO Beex
byukmii, onpegeneHsbix Ha 2g. OnucaHbl yCJIOBUS, IPU KOTOPBIX MUHUMHW3AHTBI 1 MUHAMAJIbHBIE 3HAYEHUS
dyukmonanos Fs + G5 Ha MHOXKecTBax Vi CXOAATCS K MUHUMH3AHTY U MUHMMAJIbHOMY 3HAYEHUIO HEKOTOPO-
ro dbyuxmuonana na muoxkectse V. = {v € WhP(Q) : M(v) < 0 m.B. B Q}, e M — orobpaskenne WP (Q)
BO MHOXKECTBO Bcex DyHKIU, onpeeneHubx Ha 2. B wactaocTu, Tpebyercs, 9Tobbl MOCIEI0BATEIHHOCTD PO~
crpancts WP (Q,) 6bu1a cutbHo cBasana ¢ npoctpancrsom W 1P (Q) u nocnemosarensrocts { Fs} I-cxomuiach
K dbynkumonasy, onpeenentomy na WP (Q). TIpu 9T0M OCHOBHOE BHEMAHHE YJIEJICHO yCJIOBHAM Ha OTOGpaKe-
aust Ms u M, KOTOpble BMeCTe C COOTBETCTBYIOIINMYU TPEOOBAHUSAMU Ha y4IacCTBYIOIUE 00JIacTh U DYHKIMOHAJIBL
06eCIeInBalOT CXOAUMOCTD PEIIeHNi pacCCMaTPUBAEMbIX BapHAllMOHHBIX 3aad. Takue yCjIoBHs OBLIHN IOJIy IE€HBI
B Hallell HejaBHel paboTe, U B HACTOMAIIEH CTaTbe MBI IPOABUHYJIACH B UX U3y4EHUU.
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Introduction

One of the interesting questions in the theory of multidimensional homogenization is the study
of the convergence of sequences of solutions of constrained minimization problems and variational
inequalities (see, e.g., [1-5], where problems with explicit pointwise unilateral and bilateral constra-
ints were considered). This study is closely related to the use of the notions of I'-convergence
of functionals and G-convergence of operators (for these notions in simple cases, see, e.g., [6;7]).



On the convergence of minimizers and minimum values 247

Recently, in [8], we have described a large enough class of pointwise functional (in general, implicit)
constraints for which the convergence of solutions of the corresponding variational problems is
essentially defined by the I'-convergence of the considered functionals and some general properties
of the involved variable domains. In the present paper, we continue the study of the variational
problems considered in [8].

Speaking in more detail, as in [8|, we consider a sequence of convex integral functionals
Fy : WHP(Q,) — R and a sequence of weakly lower semicontinuous and, in general, non-integral
functionals G : W1P(Qy) — R, where {Q} is a sequence of domains in R” contained in a bounded
domain 2 C R™ (n > 2) and p > 1. Along with this, we consider a sequence of closed convex sets

Ve = {v € WP(Q,) : My(v) <0 a.e. in Q,},

where M is a mapping from W1P(Qq) to the set of all functions defined on ;. We describe
conditions under which minimizers and minimum values of the functionals Fy + G, on the sets Vj
converge to a minimizer and the minimum value of a functional on the set

V={veW'(Q): M(v) <0 a.e. in Q},

where M is a mapping from W1P(Q) to the set of all functions defined on €. In particular, for our
convergence results, we require that the sequence of spaces W1P(€) is strongly connected with
the space W1P(2) and the sequence {F,} I'-converges to a functional defined on W1P(Q). In so
doing, we focus on the conditions on the mappings M, and M which, along with the corresponding
requirements on the involved domains and functionals, ensure the convergence of solutions of the
considered variational problems. Such conditions were obtained in [8]. In the present paper, we give
two new conditions that together are sufficient for the fulfillment of an important condition on the
mappings Mg and M established in [§].

The structure of this paper is as follows. In Section 1, we formulate necessary assumptions and
definitions and recall our previous results related to the topic and used in further considerations.
In Section 2, we state and prove our main result and give two theorems that follow from this result
and the main theorems in [8]. Finally, in Section 3, we first give an example where the mappings
defining the considered sets of constraints satisfy all the required conditions, and then we give two
examples related to the verification of the conditions stated in the first example.

1. Preliminaries

Let n € N, n > 2, let Q be a bounded domain in R”, and let p > 1. Let {24} be a sequence of
domains in R™ contained in €.

It is easy to see that if v € WHP(Q) and s € N, then v|q, € WHP(€,).

For every s € N, let qs: WHP(Q) — W1LP(€,) be the mapping such that, for every function
v € WP(Q), gsv = v|q..

Definition 1. We say that the sequence of domains 2 exhausts the domain 2 if, for every
increasing sequence {m;} C N, we have

meas <Q \ jElemj) =0.

Definition 2. We say that the sequence of spaces W1P(Qy) is strongly connected with the
space W1P(Q) if there exists a sequence of linear continuous operators ls: W1P(Q,) — WLP(Q)
such that the sequence of norms |/l4|| is bounded and, for every s € N and every v € W1P(Qy), we
have ¢,(lsv) = v a.e. in Q.

We denote by H the set of all sequences {v,} such that, for every s € N, vy € WHP(Q).

Definition 3. We say that the sequence {vs} € H is bounded if the sequence of norms
[vslw1p(q,) is bounded.
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For every function v € WHP(Q), we denote by Ho(v) the set of all sequences {vs} € H such that
|vs — gsvllLr(,) — 0.
It is easy to see that if v € WHP(), then {gsv} € Ho(v) and the sequence {gsv} is bounded.

Definition 4. For every s € N, let I: WHP(Q,) — R, and let : WHP(Q) — R. We say that
the sequence {Is} I'-converges to the functional I if the following conditions are satisfied:

(a) for every function v € WHP(Q), there exists a sequence {ws} € Ho(v) such that
Is(ws) = I(v);
(b) for every function v € W1P(Q) and every sequence {vs} € Ho(v), we have lim inf I;(vs) > I(v).
5—00

We pass to the consideration of functionals for which we study the convergence of minimizers
and minimum values on sets of functions with pointwise functional constraints.

Let c1,co > 0, and, for every s € N, let ps € L'(€) and ps > 0 in ©,. We assume that the
sequence of norms [|us||1(q,) is bounded.

For every s € N, let fs: 25 x R™ — R be a function satisfying the following conditions: for every
¢ € R™, the function fs(+,&) is measurable on Qg; for almost every x € ), the function fy(x,-) is
convex on R"; for almost every x € (), and every £ € R”,

Cl’&‘p - ,U's(x) < fs(xag) < 02‘§’p + Ms(x)' (1'1)

By the assumptions on the functions fs and pus, for every s € N and every v € WP(Qy), the
function fs(x, Vv) is summable on .

For every s € N, let Fy: WP(Q,) — R be the functional such that, for every function v €
WhP(Qy),

Fs(v):/fs(x,Vv)dx.
Qs

By the assumptions on the functions f,; and pg, for every s € N, the functional Fj is convex and
locally bounded. Therefore, for every s € N, the functional Fy is weakly lower semicontinuous.

Further, let c3,c4 > 0, and, for every s € N, let Gs: W'P(Q,) — R be a weakly lower
semicontinuous functional. We assume that, for every s € N and every v € WHP(Qy),

Gs(v) = 03||v||1£p(ﬂs) — ¢y (1.2)

It is clear that, for every s € N, the functional F + G, is weakly lower semicontinuous.

We define

cs = min{cy/n,c3}, g =cq4+ sug sl 1 ()
sE

By (1.1) and (1.2), for every s € N and every v € W1P(Q), we have
(Fs + Gs)(v) > C5H”H€{/1,p(gs) — C6-

Further, for every s € N, we denote by F(£25) the set of all functions v: 5 — R.
For every s € N, let M,: W'P(Q,) — F(Q). We assume that the following conditions are
satisfied:

(A1) there exists a bounded sequence {15} € H such that, for every s € N, My(¢)5) < 0 a.e.
in Q;

(Ag) if s € N and v, — v strongly in WP(Qy), then there exists an increasing sequence
{m;} C N such that M(vy,,) — Ms(v) a.e. in Qg;

(A3)if s € N, v,w € WHP(€y), and 7 € [0, 1], then

Ms((1 —=7)v+7w) < (1 —7)Ms(v) + 7Ms(w) a.e. in Q.
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For every s € N, we define
Ve = {v € WhP(Q,): My(v) <0 ae. in Q}.

It follows from conditions (Aj)—(Ag) that, for every s € N, the set V5 is nonempty, closed, and
convex.

By virtue of the specified properties of the functionals Fy + G5 and the sets V; and the known
results on the existence of minimizers of functionals (see, for instance, |9, Chapter 3|), for every
s € N, there exists a function in V; minimizing the functional Fx + G4 on the set V.

We denote by F(€) the set of all functions v: 2 — R.

Let M: WP(Q) — F(£2). We define
V ={ve W'"(Q): M(v) <0 ae. in Q}.

For the sequel, we assume that the following conditions are satisfied:

(C1) the embedding of W1P(Q) into LP(f2) is compact;

(Cs) the sequence of spaces W1P(Qy) is strongly connected with the space WP ();
(Cs3) the sequence of domains €25 exhausts the domain €2.

Using conditions (Cp)—(Cs), we proved in [8] the following proposition.

Proposition 1. Assume that the following condition is satisfied:

(B1) if v € WEP(Q), {vs} is a bounded sequence in Ho(v), and {1} is an increasing sequence
in N, then there exist an increasing sequence {5;} C {8;} and a sequence of nonnegative functions
Bj: Q — R such that 3; — 0 a.e. in Q and, for every j € N, Mg, (vs;) = M(v) — B; a.e. in Q.

Let {ws} be a bounded sequence in H such that, for every s € N, wy € V. Let {5} be an
increasing sequence in N. Then there exist an increasing sequence {s;j} C {51} and a function
w €V such that ||ws; — quwHLp(Qsj) — 0.

Remark 1. It follows from condition (A;) and Proposition 1 that if condition (Bj) of
Proposition 1 is satisfied, then the set V' is nonempty.

Further, we assume that the following conditions are satisfied:

(Cy4) there exists a functional F': WP(Q2) — R such that the sequence {F;} I'-converges to the
functional F;

(Cs) there exists a functional G: WHP(Q) — R such that, for every function v € W'P(Q) and
every bounded sequence {vs} € Ho(v), we have Gs(vs) — G(v).

Using conditions (Cy), (Cs), (A1), and (As) along with Proposition 1, inequalities (1.1) and (1.2),
and the boundedness of the sequence of norms ||ps||11(,), we proved in [8] the following results (see
Theorems 4.1 and 4.2 and Remark 4.1 in [8]).

Theorem 1.1. Assume that condition (B1) of Proposition 1 is satisfied. In addition, assume
that the following condition is satisfied:

(B") if v € WHP(Q) and M(v) < 0 a.e. in §2, then there exists a sequence {ws} € Ho(v) such
that limsup Fs(ws) < F(v) and, for every s € N, Mg(ws) <0 a.e. in Q.

S§—00
For every s € N, let us be a function in Vs minimizing the functional Fs + G5 on the set Vg,
and let {5;} be an increasing sequence in N. Then there exist an increasing sequence {sj} C {54}
and a function u € V such that the function u minimizes the functional F + G on the set V,
lJus; — quuHLp(Qsj) — 0, and (Fs; + G, )(us;) = (F + G)(u).
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Theorem 1.2. Assume that condition (B1) of Proposition 1 and condition (B") of Theorem 1.1
are satisfied. In addition, assume that the set V' is convex and the functional G is strictly convez.
For every s € N, let ug be a function in Vg minimizing the functional Fs + G5 on the set V. Then
there exists a unique function u € V- minimizing the functional F +G on the set V and the following
relations hold: ||us — qsullpr(o,) — 0 and (Fs + Gs)(us) = (F + G)(u).

In view of the importance of condition (B’) of Theorem 1.1 for the study of the convergence
of solutions of the considered variational problems, we are interested in finding other conditions
ensuring its fulfillment. Thus, in the statement of the above mentioned Theorems 4.1 and 4.2 in [§],
we used, instead of condition (B’) of Theorem 1.1, an equivalent condition which was verified in
some specific cases (see [8, Sect. 6]). In the next section, we give two new conditions that together
are sufficient for the fulfillment of condition (B’) of Theorem 1.1. In this connection, we prove the
following proposition.

Proposition 2. The functional F is convex and continuous.

Proof. We define
C7 = sup ”,U'SHLl(QS)a cs = con® + e7.
seN

Let v,w € WHP(Q), and let a € [0,1]. By condition (Cy), there exist sequences {vs} € Ho(v) and
{ws} € Ho(w) such that
Fs(vs) = F(v), Fs(ws) — F(w). (1.3)

We set z = (1 — a)v + aw and, for every s € N, we define z5 = (1 — a)vs + aqws. It is easy to see
that z € WHP(Q) and {zs} € Ho(z). Then, by condition (Cy4), we have

F(z) < liggg}st(zs). (1.4)
In turn, in view of the convexity of the functionals Fy, for every s € N, we have
Fs(zs) < (1 — a)Fs(vs) + aFs(wy).
This along with (1.3) and (1.4) implies that
F((1-a)v+aw)<(1—a)F(v)+ aF(w).

We also note that, by condition (Cy), F(v) < liminf Fs(gsv) and, by (1.1), for every s € N,

5—00

e <R) Fa) <o [ [VoPds+er
Qs

These facts and the first relation in (1.3) yield the inequality

—c7 < F(v) < 2 / |VolP dz + c.
Q

It follows from the above that the functional F is convex and, for every v € W1P(Q),
—cr < F(v) < cg(1+ [vllwir o))" (1.5)
Now, let v,w € WHP(Q). We define

_ v —wllwir@
1+ |lvllwe) + [[wllwie g

A



On the convergence of minimizers and minimum values 251

First, assume that A # 0. Then A € (0,1). Using the convexity of the functional F'; we obtain
Fv)=F((1 = Nw+Mw+ X" v —w))) < (1= ANF(w) +AF(w+ A" (v —w)).
This along with (1.5) and (1.6) implies that
F(v) = F(w) < 2°(cr + ) (1 + [ollwra) + lwllwre@)? v = wlwisq)-
Obviously, the same estimate we have for the difference F'(w) — F'(v). Thus,
|F(v) = Fw)] < 2°(er + ¢es) (L + [vllwini) + lwllwio@)? o = wllwisq)-

If A =0, we have v = w a.e. in 2. Then F(v) = F(w) and, therefore, the previous inequality holds.
From the obtained result, we deduce that the functional F' is continuous. ]

2. Main result and related theorems

Our main result is the following proposition.

Proposition 3. Assume that the following conditions are satisfied:

(A) if v € WHP(Q) and M(v) < 0 a.e. in S, then there evist a sequence {by} C W1P(Q)
and a sequence {e} C (0,+00) such that by — v strongly in WHP(Q) and, for every k € N,
M(b) < —ep a.e. in §;

(A") if v e WHP(Q), e > 0, and M (v) < —¢ a.e. in Q, then there exists a sequence {ys} € Ho(v)
such that limsup Fs(ys) < F(v) and, for every s € N, My(ys) <0 a.e. in Q.

5—00

Then condition (B') of Theorem 1.1 is satisfied.

Proof. Let v € WHP(Q), and let M (v) < 0 a.e. in Q. By condition (A’), there exist a sequence
{by} € W'P(Q) and a sequence {e;} C (0, +oc) such that

br, — v strongly in W1HP(Q), (2.1)
VkeN  M(b) < —&x ae. in €.

Then, by condition (A”), for every k € N, there exists a sequence {ygk)} € Ho(bx) such that
lim sup F,(y*)) < F(by,) and

s

S§—00
VseN My (y®) <0 ae in Q. (2.2)
Hence, there exists an increasing sequence {my} C N such that, for every k € N and every ¢t € N,
t > mg,
k _
Iyt — qebrll ooy < k7L (2.3)
k _
Fi(yt”) < F(bg) + k7. (2.4)
For every t € N, we define
' 1 if ¢ < mi,
" | max{k e N:t>my} if t>m.

Thus, for every t € N, we have ¢, € N. In addition, if t € N and ¢ > m;, then ¢ > m,,. Now, for
every t € N, we define w; = yt(t*). It is easy to see that, for every t € N, wy € WHP(Q;). Next, we fix
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an arbitrary € > 0. By (2.1) and the continuity of the functional F, there exists k; € N such that
k1 > 2/e and, for every k € N, k > kq,

ku — UHLp(Q) < 8/2, F(bk) < F(U) + 5/2. (2.5)
Let t € N, t > my,. Obviously, ¢, > k1. Then, by (2.5), we have
b, —vllzr) <€/2,  F(bi,) < F(v) +¢/2. (2.6)

In addition, taking into account that ¢t > my, and t. > k1 > 2/e, we deduce from (2.3) and (2.4)

the inequalities |w; — qiby,||1r(0,) < €/2 and Fy(wy) < F(by,) + €/2. These inequalities and

inequalities (2.6) imply that [w; — qvl|r(q,) < € and Fi(w;) < F(v) + e. It follows from the

above that {ws} € Ho(v) and limsup Fs(ws) < F(v). Finally, taking into account (2.2), we find
S$—00

that, for every s € N, M(ws) < 0 a.e. in Q. Thus, condition (B’) of Theorem 1.1 is satisfied. [

From Theorems 1.1 and 1.2 and Proposition 3, we deduce the following results.

Theorem 2.3. Assume that condition (By) of Proposition 1 and conditions (A’) and (A") of
Proposition 3 are satisfied. For every s € N, let us be a function in Vi minimizing the functional
Fs + Gs on the set Vi, and let {5k} be an increasing sequence in N. Then there exist an increasing
sequence {s;} C {5} and a function u € V such that the function u minimizes the functional F +G
on the set V, |lus, — quuHLp(QSj) — 0, and (Fs; + G, )(us;) — (F' + G)(u).

Theorem 2.4. Assume that condition (By) of Proposition 1 and conditions (A") and (A”) of
Proposition 3 are satisfied. In addition, assume that the set V is conver and the functional G is
strictly convex. For every s € N, let us be a function in Vs minimizing the functional Fs + G5 on
the set Vs. Then there exists a unique function u € V. minimizing the functional F + G on the set V
and the following relations hold: ||us — qsul|rr(q,) — 0 and (Fs + Gs)(us) — (F + G)(u).

3. Examples

We first give an example of the mappings M, and M satisfying conditions (A1)—(Ag) stated in
Section 1, condition (B;) of Proposition 1, and conditions (A’) and (A”) of Proposition 3. A similar
example related to the verification of a condition equivalent to condition (B’) of Theorem 1.1 was
considered in 8, Sect. 6]. However, as compared with [8| (more precisely, with [8, Example 6.3]), in
the example below, we use weaker assumptions on the involved obstacle functions.

Example 1. We assume that the following condition is satisfied:

for every sequence of measurable sets Hg C €25 such that meas H; — 0, / psdr — 0. (3.1)

S

Let ¢: Q — R, and, for every s € N, let ps: Qs — R. Let {75} C [0, +00), 75 — 0, and, for every
s € N, let ag: © — R be a nonnegative function. We assume that

a; — 0 ae. in Q, (3.2)
VseN ¢p—7s< s <p+as ae in Q. (3.3)

Let ®: WhP(Q) — R, and, for every s € N, let ®,: WP(€,) — R be a continuous convex
functional. We assume that the following condition is satisfied:

() for every function v € WHP() and every bounded sequence {vs} € Ho(v), ®s(vs) — ®(v).

We note that, by the convexity of the functionals ®¢ and condition (x), the functional ® is
convex.
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Let h: R — R be a nondecreasing convex function. We assume that the following conditions are
satisfied:

(i) there exist 1 € WP(Q) and ¢ > 0 such that h(y) + ®(1) < ¢ — c ae. in Q;

(ii) there exists a bounded sequence {@,} € H such that, for every s € N, h(@s) + Ps(@s) < @5
a.e. in €.

Now, for every s € N, let My: W1P(Q,) — F(s) be the mapping such that, for every function
v € WHP(Qy),
M;(v) = h(v) = s + Ps(v).
The mappings M, satisfy conditions (A;)—(As) stated in Section 1. Indeed, it follows from
condition (ii) that the mappings M, satisfy condition (Aj). The continuity of the function h and
the functionals ®¢ imply that the mappings M satisfy condition (Asg). Using the convexity of the

function h and the functionals ®,, we easily establish that the mappings M; satisfy condition (As).
Further, let M: WP(Q) — F() be the mapping such that, for every function v € WHP(Q),

M(v) = h(v) — ¢ + @(v).

Using conditions (C1)—(Cs), the continuity of the function h, condition (x), and assumptions (3.2)
and (3.3), in the same way as in [8, Example 6.3], we find that the mappings M and M satisfy
condition (Bj) of Proposition 1.

Next, we show that the mapping M satisfies condition (A’) of Proposition 3. Let v € W1P(Q),
and let M (v) < 0 a.e. in Q. For every k € N, we define

bp=01—-kYo+k ), e =ckl

Obviously, {br} € WHP(Q) and {e;} C (0,400). It is also clear that by — v strongly in W1P((Q).
We fix an arbitrary k£ € N. Using the convexity of the functional ® and the function h, we obtain

M(b) < (1 =k HYM(w) + kM) in Q. (3.4)

Since M (v) < 0 a.e. in © and, by condition (i), M(¢)) < —c a.e. in §2, we deduce from (3.4) that
M (b)) < —¢p a.e. in Q. Thus, the mapping M satisfies condition (A’) of Proposition 3.

Finally, we show that the mappings My and M satisfy condition (A”) of Proposition 3. Let
v € WHP(Q), let € > 0, and let M(v) < —¢ a.e. in 2. By condition (Cy), there exists a sequence
{vs} € Ho(v) such that Fy(vs) — F(v). For every s € N, we define

As = (los = asvll o, +1/9)"2

Since {vs} € Ho(v), we have
s = 0. (3.5)

Now, for every s € N, we define
Us = min{vs — A, qsv}, By = {vs — qsv 2 Ash
It is easy to see that {v5} € H and, for every s € N,
195 — qsvllzp(y) < Vs — qsvl|Lr(q,) + As(meas Q)P meas By < A,

Then, by the inclusion {vs} € Ho(v) and (3.5), we have {5} € Ho(v) and meas Es — 0. The latter
fact and condition (3.1) imply that

/,us dx — 0, /|Vv|p dx — 0. (3.6)
Es Es
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Fixing an arbitrary s € N, by the definition of the function v5 and the set g, we obtain

Fy(vs) = Fs(vs) — /fs(x,Vvs)dx—|—/fs(x,V(qsv))dx.
Es Es

Hence, using (1.1), we get
Fy(vs) < Fy(vg) + Q/Ms dx + ¢ / |VolP de.
E, Es
Then, taking into account (3.6) and the fact that Fy(vs) — F(v), we conclude that

lim sup Fs(v5) < F(v).

5§—00

Using this inequality along with (1.1), the boundedness of the sequence of norms ||us||1(,), and
the inclusion {05} € Ho(v), we find that the sequence {v5} is bounded. Therefore, by condition (x),
we have ®4(v5) — ®(v). In view of this and the convergence 7, — 0, there exists § € N such that

VseN,s >3 7o+ |Ps(vs) — P(v)] < e (3.7)
We define the sequence {y,} as follows:
{sos if 5 <5,
Ys = § _ . _
vy if s> s.

It is clear that {ys} € Ho(v) and limsup Fs(ys) < F(v). We fix an arbitrary s € N. If s < 3, by
S§—00

condition (ii), we have M(ys) < 0 a.e. in Q. Now, let s > 5. By (3.3) and the inequality M (v) < —¢
a.e. in ), there exists a set ' C Q5 of measure zero such that, for every x € Qg \ E,

p(x) <@s(@) + 75, h(o() —p(z) + 0(v) < —e (3.8)
We fix an arbitrary « € Qg \ E. Since 95(z) < v(z) and the function h is nondecreasing, we have
h(©s()) < h(v(z)). (3.9)
Using the equality ys = 05 and (3.7)—(3.9), we obtain
M;(ys)(z) =h(vs(z)) — @s(z) + Ps(0s)
<h(v(x)) — @(x) + @(v) + @(x) — @s(x) + Ps(vs) — P(v)
<75 + | Ps(0s) — P(v)] —e < 0.

Hence, M;(ys) < 0 a.e. in Q. Thus, for every s € N, M,(ys) < 0 a.e. in Q,. From the above
considerations, we conclude that the mappings M and M satisfy condition (A”) of Proposition 3.

Remark 2. It should be noted in connection with the above example that, in [8, Example 6.3],
we assumed that the corresponding functions ¢ and ¢, satisfy conditions (3.2) and (3.3) and the
corresponding functionals ® and @, satisfy condition (). However, instead of conditions (i) and (ii),
we assumed in [8, Example 6.3| that the following condition is satisfied:

VseN s = h(0) + ®s(6s) + ¢ ae. in Qg (3.10)

where ¢ > 0 and, for every s € N, 6, is the zero function on ;. It follows from conditions (3.2),
(3.3), (3.10), and (*) that the same functions and functionals satisfy conditions (i) and (ii). Indeed,
we have {0;} € H, the sequence {fs} is bounded, and, by condition (3.10), for every s € N,
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h(fs) + ®5(0s) < s a.e. in Q. Thus, condition (ii) is satisfied. Next, by (3.2), there exists a set
E' C Q of measure zero such that

Ve e Q\E'  as(x) — 0. (3.11)
In addition, by (3.3) and (3.10), there exists a set E” C Q of measure zero such that
seN, 2 € Qs \ B = h(0) + ®4(05) + ¢ < p(z) + as(z). (3.12)

Finally, for every r € N, we define

E.=Q\ UQs,

and let E” be the union of all sets E,., » € N. By condition (Cs), we have meas E” = 0. Now, let
xz € Q\ (E'UE"UE"). We fix an arbitrary § > 0. By (3.11), there exists k; € N such that

VseN, s>k, as(z)<o. (3.13)

We denote by 6 the zero function on €. Since {5} € Ho(0), by condition (x), we have ®4(05) — ®(0).
Then there exists k9 € N such that

VseN, s> ko, @) < B(0,) + 0. (3.14)

We define k = max{kj,ks}. Obviously, z € Q\ Ej. Therefore, there exists s € N, s > k, such
that € Q. Thus, € Qs \ E”. Then, by (3.12)-(3.14), we have h(0) + ®(8) + ¢ < ¢(x) + 24.
Consequently, h(f) + ®(f) < ¢ — c a.e. in . Thus, condition (i) is satisfied. However, in general, it
does not follow from conditions (i) and (ii) that condition (3.10) is satisfied. In this connection, see
Example 2 below.

Remark 3. We note that condition (ii) in Example 1 almost follows from other conditions in
this example. Indeed, by condition (i) in Example 1, there exists a set E C € of measure zero such
that

Vee Q\E  h((x)) + P(¢) < o(x) —c. (3.15)
)

Moreover, by condition (%) in Example 1, we have ®4(¢s10) — ®(¢). In view of this and the

convergence 7s — 0, there exists § € N such that
VseN,s>5 75+ |Ps(qs0) — P(0)] < c. (3.16)
Let s € N, s > 5. By (3.3), there exists a set FE C Q4 of measure zero such that
Vee Q\E o) < gs(z) + 7. (3.17)

It follows from (3.15)—(3.17) that h(qs®)) + Ps(gs®) < @5 a.e. in Q. Thus, setting, for every s € N,
®s = qs¥, we conclude that {ps} € H, the sequence {@s} is bounded, and, for every s € N, s > 3,
h@s)+ Ps(Ps) < s a.e. in Q. This is what allows us to say that condition (ii) in Example 1 almost
follows from other conditions in this example.

We now consider two examples where conditions (x), (i), and (ii) stated in Example 1 are
satisfied.

Example 2. Let ¢: ) = R, and assume that the following condition is satisfied:

(") there exists a function @ € W1P(Q) such that ¢ < ¢ a.e. in Q.

For every s € N, let ¢g: s — R. We assume that the following condition is satisfied:

(it’) there exists a bounded sequence {@} € H such that, for every s € N, ¢, < ¢ a.e. in Q.
Next, for every s € N, let ®,: W'P(Q,) — R be the functional such that, for every function

v € WHP(Qy), ®s(v) = / vdz.

s
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We assume that the following condition is satisfied:

(+") there exists a nonnegative bounded measurable function b on € such that, for every open

cube @ C 2, we have meas(Q N Q) — / bdx.
Q

By this condition, we have

Vv e L1(Q) /vdm — /bv dx. (3.18)
Qs Q

Now, let ®: W1P(Q) — R be the functional such that Yo € WhP(Q) ®(v) = / bvdz. By (3.18),
Q
the functionals ®; and ® satisfy condition (%) in Example 1.

Next, let h: R — R be the function such that, for every ¢ € R, h(t) = ¢t. We show that the
functions h, ¢, and ¢s and the functionals ®¢ and ® satisfy conditions (i) and (ii) in Example 1.
By condition (i'), there exists a function ¢ € WP(2) such that ¢ < ¢ a.e. in Q. We fix ¢ > 0 such
that

/b(pdx < c/bdac (3.19)
Q Q
and define 1) = g—c. Using the inequality @ < ¢ a.e. in Q and (3.19), we find that h(¢))+®(¢)) < p—c
a.e. in €. Thus, the functions h and ¢ and the functional ® satisfy condition (i) in Example 1.
Further, by condition (ii’), there exists a bounded sequence {@s} € H such that, for every s € N,
Ps < s a.e. in Q. For every s € N, we define

' ! / 5. d
- T.
® " measQ, s

Qs

Using the Holder inequality, we find that
Vs e N |t](meas Q)P < @5l e (02s)- (3.20)

Now, for every s € N, we define g, = @5 — [ts|. Obviously, {ps} € H. In addition, the boundedness
of the sequence {¢s} and (3.20) imply that the sequence {@s} is bounded. It is also easy to see that,
for every s € N, h(@s)+Ps(ps) < @5 a.e. in Q. Thus, the functions h and ¢ and the functionals @
satisfy condition (ii) in Example 1.

Finally, assuming that the functions h and ¢ and the functionals @4 satisfy condition (3.10), we
find that, for every s € N, s > 0 a.e. in €);. However, in general, this is not true. Thus, in general,
it does not follow from conditions (i) and (ii) in Example 1 that condition (3.10) is satisfied.

Example 3. Let ¢: 2 — R be a nonnegative function, and, for every s € N; let p;: Q3 - R
be a nonnegative function. In addition, for every s € N, let ®4: W'P(Q,) — R be the functional

such that, for every function v € WHP(€), ®4(v) = |v|P dx. We assume that condition (') in

Example 2 is satisfied, and let ®: WHP(Q) — R be the functional such that

Vo e WHP(Q)  ®(v) = /bw dz.
Q
By (3.18), the functionals ®5 and ® satisfy condition (*) in Example 1.
Next, let h: R — R be the function such that, for every ¢t € R, h(t) = t. We show that the

functions h, ¢, and ¢, and the functionals ®4 and ® satisfy conditions (i) and (ii) in Example 1.
We fix ¢ > 0 such that

P! /bdx <277, (3.21)
Q
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and let ¢: @ — R be the function such that, for every = € Q, ¢(z) = —2¢. Using (3.21), we find
that h(y) + ®(¢) < —c in Q. Therefore, in view of the nonnegativity of the function ¢, we have
h(1p) + ®(¢) < ¢ — ¢ in Q. Thus, the functions h and ¢ and the functional ® satisfy condition (i)
in Example 1. Further, for every s € N, let ¢ be the zero function on Q. Obviously, {¢s} € H
and the sequence {@;} is bounded. Moreover, by the nonnegativity of the functions ¢, for every
s € N, h(ps) + Ps(@s) < ¢s in Q. Thus, the functions h and ¢, and the functionals @ satisfy
condition (ii) in Example 1.

In conclusion, we note that the fulfillment of conditions (C;)—(Cs) is discussed, for instance, in [5].
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