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ON THE CONVERGENCE OF MINIMIZERS AND MINIMUM VALUES

IN VARIATIONAL PROBLEMS WITH POINTWISE FUNCTIONAL

CONSTRAINTS IN VARIABLE DOMAINS

A.A. Kovalevsky

We consider a sequence of convex integral functionals Fs : W 1,p(Ωs) → R and a sequence of weakly lower
semicontinuous and, in general, non-integral functionals Gs : W 1,p(Ωs) → R, where {Ωs} is a sequence of
domains in R

n contained in a bounded domain Ω ⊂ R
n (n > 2) and p > 1. Along with this, we consider

a sequence of closed convex sets Vs = {v ∈ W 1,p(Ωs) : Ms(v) 6 0 a.e. in Ωs}, where Ms is a mapping from
W 1,p(Ωs) to the set of all functions defined on Ωs. We describe conditions under which minimizers and minimum
values of the functionals Fs+Gs on the sets Vs converge to a minimizer and the minimum value of a functional
on the set V = {v ∈ W 1,p(Ω) : M(v) 6 0 a.e. in Ω}, where M is a mapping from W 1,p(Ω) to the set of
all functions defined on Ω. In particular, for our convergence results, we require that the sequence of spaces
W 1,p(Ωs) is strongly connected with the space W 1,p(Ω) and the sequence {Fs} Γ -converges to a functional
defined on W 1,p(Ω). In so doing, we focus on the conditions on the mappings Ms and M which, along with the
corresponding requirements on the involved domains and functionals, ensure the convergence of solutions of the
considered variational problems. Such conditions have been obtained in our recent work, and, in the present
paper, we advance in studying them.

Keywords: variational problem, integral functional, pointwise functional constraint, minimizer, minimum
value, Γ -convergence, strong connectedness, variable domains.

А. А.Ковалевский. О сходимости минимизантов и минимальных значений в вариацион-

ных задачах с поточечно функциональными ограничениями в переменных областях.

Рассмотрены последовательность выпуклых интегральных функционалов Fs : W 1,p(Ωs) → R и после-
довательность слабо полунепрерывных снизу и, вообще говоря, не интегральных функционалов
Gs : W 1,p(Ωs) → R, где {Ωs} — последовательность областей в Rn, содержащихся в ограниченной об-
ласти Ω ⊂ Rn (n > 2), и p > 1. Наряду с этим рассмотрена последовательность замкнутых выпуклых
множеств Vs = {v ∈ W 1,p(Ωs) : Ms(v) 6 0 п.в. в Ωs}, где Ms — отображение W 1,p(Ωs) во множество всех
функций, определенных на Ωs. Описаны условия, при которых минимизанты и минимальные значения
функционалов Fs +Gs на множествах Vs сходятся к минимизанту и минимальному значению некоторо-
го функционала на множестве V = {v ∈ W 1,p(Ω) : M(v) 6 0 п.в. в Ω}, где M — отображение W 1,p(Ω)
во множество всех функций, определенных на Ω. В частности, требуется, чтобы последовательность про-
странств W 1,p(Ωs) была сильно связана с пространством W 1,p(Ω) и последовательность {Fs} Γ -сходилась
к функционалу, определенному на W 1,p(Ω). При этом основное внимание уделено условиям на отображе-
ния Ms и M , которые вместе с соответствующими требованиями на участвующие области и функционалы
обеспечивают сходимость решений рассматриваемых вариационных задач. Такие условия были получены
в нашей недавней работе, и в настоящей статье мы продвинулись в их изучении.
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Introduction

One of the interesting questions in the theory of multidimensional homogenization is the study
of the convergence of sequences of solutions of constrained minimization problems and variational
inequalities (see, e.g., [1–5], where problems with explicit pointwise unilateral and bilateral constra-
ints were considered). This study is closely related to the use of the notions of Γ -convergence
of functionals and G-convergence of operators (for these notions in simple cases, see, e.g., [6; 7]).
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Recently, in [8], we have described a large enough class of pointwise functional (in general, implicit)
constraints for which the convergence of solutions of the corresponding variational problems is
essentially defined by the Γ -convergence of the considered functionals and some general properties
of the involved variable domains. In the present paper, we continue the study of the variational
problems considered in [8].

Speaking in more detail, as in [8], we consider a sequence of convex integral functionals
Fs : W 1,p(Ωs) → R and a sequence of weakly lower semicontinuous and, in general, non-integral
functionals Gs :W

1,p(Ωs) → R, where {Ωs} is a sequence of domains in R
n contained in a bounded

domain Ω ⊂ R
n (n > 2) and p > 1. Along with this, we consider a sequence of closed convex sets

Vs = {v ∈W 1,p(Ωs) :Ms(v) 6 0 a.e. in Ωs},

where Ms is a mapping from W 1,p(Ωs) to the set of all functions defined on Ωs. We describe
conditions under which minimizers and minimum values of the functionals Fs +Gs on the sets Vs
converge to a minimizer and the minimum value of a functional on the set

V = {v ∈W 1,p(Ω) :M(v) 6 0 a.e. in Ω},

where M is a mapping from W 1,p(Ω) to the set of all functions defined on Ω. In particular, for our
convergence results, we require that the sequence of spaces W 1,p(Ωs) is strongly connected with
the space W 1,p(Ω) and the sequence {Fs} Γ -converges to a functional defined on W 1,p(Ω). In so
doing, we focus on the conditions on the mappings Ms and M which, along with the corresponding
requirements on the involved domains and functionals, ensure the convergence of solutions of the
considered variational problems. Such conditions were obtained in [8]. In the present paper, we give
two new conditions that together are sufficient for the fulfillment of an important condition on the
mappings Ms and M established in [8].

The structure of this paper is as follows. In Section 1, we formulate necessary assumptions and
definitions and recall our previous results related to the topic and used in further considerations.
In Section 2, we state and prove our main result and give two theorems that follow from this result
and the main theorems in [8]. Finally, in Section 3, we first give an example where the mappings
defining the considered sets of constraints satisfy all the required conditions, and then we give two
examples related to the verification of the conditions stated in the first example.

1. Preliminaries

Let n ∈ N, n > 2, let Ω be a bounded domain in R
n, and let p > 1. Let {Ωs} be a sequence of

domains in R
n contained in Ω.

It is easy to see that if v ∈W 1,p(Ω) and s ∈ N, then v|Ωs
∈W 1,p(Ωs).

For every s ∈ N, let qs : W
1,p(Ω) → W 1,p(Ωs) be the mapping such that, for every function

v ∈W 1,p(Ω), qsv = v|Ωs
.

Definition 1. We say that the sequence of domains Ωs exhausts the domain Ω if, for every
increasing sequence {mj} ⊂ N, we have

meas
(

Ω \
∞
⋃

j=1
Ωmj

)

= 0.

Definition 2. We say that the sequence of spaces W 1,p(Ωs) is strongly connected with the
space W 1,p(Ω) if there exists a sequence of linear continuous operators ls : W

1,p(Ωs) → W 1,p(Ω)
such that the sequence of norms ‖ls‖ is bounded and, for every s ∈ N and every v ∈ W 1,p(Ωs), we
have qs(lsv) = v a.e. in Ωs.

We denote by H the set of all sequences {vs} such that, for every s ∈ N, vs ∈W
1,p(Ωs).

Definition 3. We say that the sequence {vs} ∈ H is bounded if the sequence of norms
‖vs‖W 1,p(Ωs) is bounded.
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For every function v ∈W 1,p(Ω), we denote by H0(v) the set of all sequences {vs} ∈ H such that
‖vs − qsv‖Lp(Ωs) → 0.

It is easy to see that if v ∈W 1,p(Ω), then {qsv} ∈ H0(v) and the sequence {qsv} is bounded.

Definition 4. For every s ∈ N, let Is : W
1,p(Ωs) → R, and let I : W 1,p(Ω) → R. We say that

the sequence {Is} Γ -converges to the functional I if the following conditions are satisfied:

(a) for every function v ∈ W 1,p(Ω), there exists a sequence {ws} ∈ H0(v) such that
Is(ws) → I(v);

(b) for every function v ∈W 1,p(Ω) and every sequence {vs} ∈ H0(v), we have lim inf
s→∞

Is(vs) > I(v).

We pass to the consideration of functionals for which we study the convergence of minimizers
and minimum values on sets of functions with pointwise functional constraints.

Let c1, c2 > 0, and, for every s ∈ N, let µs ∈ L1(Ωs) and µs > 0 in Ωs. We assume that the
sequence of norms ‖µs‖L1(Ωs) is bounded.

For every s ∈ N, let fs : Ωs×R
n → R be a function satisfying the following conditions: for every

ξ ∈ R
n, the function fs(·, ξ) is measurable on Ωs; for almost every x ∈ Ωs, the function fs(x, ·) is

convex on R
n; for almost every x ∈ Ωs and every ξ ∈ R

n,

c1|ξ|
p − µs(x) 6 fs(x, ξ) 6 c2|ξ|

p + µs(x). (1.1)

By the assumptions on the functions fs and µs, for every s ∈ N and every v ∈ W 1,p(Ωs), the
function fs(x,∇v) is summable on Ωs.

For every s ∈ N, let Fs : W
1,p(Ωs) → R be the functional such that, for every function v ∈

W 1,p(Ωs),

Fs(v) =

∫

Ωs

fs(x,∇v)dx.

By the assumptions on the functions fs and µs, for every s ∈ N, the functional Fs is convex and
locally bounded. Therefore, for every s ∈ N, the functional Fs is weakly lower semicontinuous.

Further, let c3, c4 > 0, and, for every s ∈ N, let Gs : W
1,p(Ωs) → R be a weakly lower

semicontinuous functional. We assume that, for every s ∈ N and every v ∈W 1,p(Ωs),

Gs(v) > c3‖v‖
p
Lp(Ωs)

− c4. (1.2)

It is clear that, for every s ∈ N, the functional Fs +Gs is weakly lower semicontinuous.

We define

c5 = min{c1/n, c3}, c6 = c4 + sup
s∈N

‖µs‖L1(Ωs).

By (1.1) and (1.2), for every s ∈ N and every v ∈W 1,p(Ωs), we have

(Fs +Gs)(v) > c5‖v‖
p
W 1,p(Ωs)

− c6.

Further, for every s ∈ N, we denote by F(Ωs) the set of all functions v : Ωs → R.

For every s ∈ N, let Ms : W
1,p(Ωs) → F(Ωs). We assume that the following conditions are

satisfied:

(A1) there exists a bounded sequence {ψs} ∈ H such that, for every s ∈ N, Ms(ψs) 6 0 a.e.
in Ωs;

(A2) if s ∈ N and vm → v strongly in W 1,p(Ωs), then there exists an increasing sequence
{mj} ⊂ N such that Ms(vmj

) →Ms(v) a.e. in Ωs;

(A3) if s ∈ N, v,w ∈W 1,p(Ωs), and τ ∈ [0, 1], then

Ms((1− τ)v + τw) 6 (1− τ)Ms(v) + τMs(w) a.e. in Ωs.
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For every s ∈ N, we define

Vs = {v ∈W 1,p(Ωs) : Ms(v) 6 0 a.e. in Ωs}.

It follows from conditions (A1)–(A3) that, for every s ∈ N, the set Vs is nonempty, closed, and
convex.

By virtue of the specified properties of the functionals Fs +Gs and the sets Vs and the known
results on the existence of minimizers of functionals (see, for instance, [9, Chapter 3]), for every
s ∈ N, there exists a function in Vs minimizing the functional Fs +Gs on the set Vs.

We denote by F(Ω) the set of all functions v : Ω → R.

Let M : W 1,p(Ω) → F(Ω). We define

V = {v ∈W 1,p(Ω): M(v) 6 0 a.e. in Ω}.

For the sequel, we assume that the following conditions are satisfied:

(C1) the embedding of W 1,p(Ω) into Lp(Ω) is compact;

(C2) the sequence of spaces W 1,p(Ωs) is strongly connected with the space W 1,p(Ω);

(C3) the sequence of domains Ωs exhausts the domain Ω.

Using conditions (C1)–(C3), we proved in [8] the following proposition.

Proposition 1. Assume that the following condition is satisfied:

(B1) if v ∈ W 1,p(Ω), {vs} is a bounded sequence in H0(v), and {ŝk} is an increasing sequence

in N, then there exist an increasing sequence {s̃j} ⊂ {ŝk} and a sequence of nonnegative functions

βj : Ω → R such that βj → 0 a.e. in Ω and, for every j ∈ N, Ms̃j(vs̃j ) >M(v)− βj a.e. in Ωs̃j .

Let {ws} be a bounded sequence in H such that, for every s ∈ N, ws ∈ Vs. Let {s̄k} be an

increasing sequence in N. Then there exist an increasing sequence {sj} ⊂ {s̄k} and a function

w ∈ V such that ‖wsj − qsjw‖Lp(Ωsj
) → 0.

Remark 1. It follows from condition (A1) and Proposition 1 that if condition (B1) of
Proposition 1 is satisfied, then the set V is nonempty.

Further, we assume that the following conditions are satisfied:

(C4) there exists a functional F : W 1,p(Ω) → R such that the sequence {Fs} Γ -converges to the
functional F ;

(C5) there exists a functional G : W 1,p(Ω) → R such that, for every function v ∈ W 1,p(Ω) and
every bounded sequence {vs} ∈ H0(v), we have Gs(vs) → G(v).

Using conditions (C4), (C5), (A1), and (A3) along with Proposition 1, inequalities (1.1) and (1.2),
and the boundedness of the sequence of norms ‖µs‖L1(Ωs), we proved in [8] the following results (see
Theorems 4.1 and 4.2 and Remark 4.1 in [8]).

Theorem 1.1. Assume that condition (B1) of Proposition 1 is satisfied. In addition, assume

that the following condition is satisfied:

(B′) if v ∈ W 1,p(Ω) and M(v) 6 0 a.e. in Ω, then there exists a sequence {ws} ∈ H0(v) such

that lim sup
s→∞

Fs(ws) 6 F (v) and, for every s ∈ N, Ms(ws) 6 0 a.e. in Ωs.

For every s ∈ N, let us be a function in Vs minimizing the functional Fs + Gs on the set Vs,
and let {s̄k} be an increasing sequence in N. Then there exist an increasing sequence {sj} ⊂ {s̄k}
and a function u ∈ V such that the function u minimizes the functional F + G on the set V ,

‖usj − qsju‖Lp(Ωsj
) → 0, and (Fsj +Gsj )(usj ) → (F +G)(u).
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Theorem 1.2. Assume that condition (B1) of Proposition 1 and condition (B′) of Theorem 1.1
are satisfied. In addition, assume that the set V is convex and the functional G is strictly convex.

For every s ∈ N, let us be a function in Vs minimizing the functional Fs +Gs on the set Vs. Then

there exists a unique function u ∈ V minimizing the functional F +G on the set V and the following

relations hold: ‖us − qsu‖Lp(Ωs) → 0 and (Fs +Gs)(us) → (F +G)(u).

In view of the importance of condition (B′) of Theorem 1.1 for the study of the convergence
of solutions of the considered variational problems, we are interested in finding other conditions
ensuring its fulfillment. Thus, in the statement of the above mentioned Theorems 4.1 and 4.2 in [8],
we used, instead of condition (B′) of Theorem 1.1, an equivalent condition which was verified in
some specific cases (see [8, Sect. 6]). In the next section, we give two new conditions that together
are sufficient for the fulfillment of condition (B′) of Theorem 1.1. In this connection, we prove the
following proposition.

Proposition 2. The functional F is convex and continuous.

Proof. We define
c7 = sup

s∈N
‖µs‖L1(Ωs), c8 = c2n

p + c7.

Let v,w ∈ W 1,p(Ω), and let α ∈ [0, 1]. By condition (C4), there exist sequences {vs} ∈ H0(v) and
{ws} ∈ H0(w) such that

Fs(vs) → F (v), Fs(ws) → F (w). (1.3)

We set z = (1 − α)v + αw and, for every s ∈ N, we define zs = (1 − α)vs + αws. It is easy to see
that z ∈W 1,p(Ω) and {zs} ∈ H0(z). Then, by condition (C4), we have

F (z) 6 lim inf
s→∞

Fs(zs). (1.4)

In turn, in view of the convexity of the functionals Fs, for every s ∈ N, we have

Fs(zs) 6 (1− α)Fs(vs) + αFs(ws).

This along with (1.3) and (1.4) implies that

F ((1− α)v + αw) 6 (1− α)F (v) + αF (w).

We also note that, by condition (C4), F (v) 6 lim inf
s→∞

Fs(qsv) and, by (1.1), for every s ∈ N,

−c7 6 Fs(vs), Fs(qsv) 6 c2

∫

Ωs

|∇(qsv)|
p dx+ c7.

These facts and the first relation in (1.3) yield the inequality

−c7 6 F (v) 6 c2

∫

Ω

|∇v|p dx+ c7.

It follows from the above that the functional F is convex and, for every v ∈W 1,p(Ω),

−c7 6 F (v) 6 c8(1 + ‖v‖W 1,p(Ω))
p. (1.5)

Now, let v,w ∈W 1,p(Ω). We define

λ =
‖v − w‖W 1,p(Ω)

1 + ‖v‖W 1,p(Ω) + ‖w‖W 1,p(Ω)
. (1.6)
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First, assume that λ 6= 0. Then λ ∈ (0, 1). Using the convexity of the functional F , we obtain

F (v) = F ((1 − λ)w + λ(w + λ−1(v − w))) 6 (1− λ)F (w) + λF (w + λ−1(v −w)).

This along with (1.5) and (1.6) implies that

F (v)− F (w) 6 2p(c7 + c8)(1 + ‖v‖W 1,p(Ω) + ‖w‖W 1,p(Ω))
p−1‖v − w‖W 1,p(Ω).

Obviously, the same estimate we have for the difference F (w) − F (v). Thus,

|F (v)− F (w)| 6 2p(c7 + c8)(1 + ‖v‖W 1,p(Ω) + ‖w‖W 1,p(Ω))
p−1‖v − w‖W 1,p(Ω).

If λ = 0, we have v = w a.e. in Ω. Then F (v) = F (w) and, therefore, the previous inequality holds.
From the obtained result, we deduce that the functional F is continuous. �

2. Main result and related theorems

Our main result is the following proposition.

Proposition 3. Assume that the following conditions are satisfied:

(A′) if v ∈ W 1,p(Ω) and M(v) 6 0 a.e. in Ω, then there exist a sequence {bk} ⊂ W 1,p(Ω)
and a sequence {εk} ⊂ (0,+∞) such that bk → v strongly in W 1,p(Ω) and, for every k ∈ N,

M(bk) 6 −εk a.e. in Ω;

(A′′) if v ∈W 1,p(Ω), ε > 0, and M(v) 6 −ε a.e. in Ω, then there exists a sequence {ys} ∈ H0(v)
such that lim sup

s→∞
Fs(ys) 6 F (v) and, for every s ∈ N, Ms(ys) 6 0 a.e. in Ωs.

Then condition (B′) of Theorem 1.1 is satisfied.

Proof. Let v ∈W 1,p(Ω), and let M(v) 6 0 a.e. in Ω. By condition (A′), there exist a sequence
{bk} ⊂W 1,p(Ω) and a sequence {εk} ⊂ (0,+∞) such that

bk → v strongly in W 1,p(Ω), (2.1)

∀k ∈ N M(bk) 6 −εk a.e. in Ω.

Then, by condition (A′′), for every k ∈ N, there exists a sequence {y
(k)
s } ∈ H0(bk) such that

lim sup
s→∞

Fs(y
(k)
s ) 6 F (bk) and

∀s ∈ N Ms(y
(k)
s ) 6 0 a.e. in Ωs. (2.2)

Hence, there exists an increasing sequence {mk} ⊂ N such that, for every k ∈ N and every t ∈ N,
t > mk,

‖y
(k)
t − qtbk‖Lp(Ωt) 6 k−1, (2.3)

Ft(y
(k)
t ) 6 F (bk) + k−1. (2.4)

For every t ∈ N, we define

t∗ =

{

1 if t 6 m1,

max{k ∈ N : t > mk} if t > m1.

Thus, for every t ∈ N, we have t∗ ∈ N. In addition, if t ∈ N and t > m1, then t > mt∗ . Now, for

every t ∈ N, we define wt = y
(t∗)
t . It is easy to see that, for every t ∈ N, wt ∈W 1,p(Ωt). Next, we fix
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an arbitrary ε > 0. By (2.1) and the continuity of the functional F , there exists k1 ∈ N such that
k1 > 2/ε and, for every k ∈ N, k > k1,

‖bk − v‖Lp(Ω) 6 ε/2, F (bk) 6 F (v) + ε/2. (2.5)

Let t ∈ N, t > mk1 . Obviously, t∗ > k1. Then, by (2.5), we have

‖bt∗ − v‖Lp(Ω) 6 ε/2, F (bt∗) 6 F (v) + ε/2. (2.6)

In addition, taking into account that t > mt∗ and t∗ > k1 > 2/ε, we deduce from (2.3) and (2.4)
the inequalities ‖wt − qtbt∗‖Lp(Ωt) 6 ε/2 and Ft(wt) 6 F (bt∗) + ε/2. These inequalities and
inequalities (2.6) imply that ‖wt − qtv‖Lp(Ωt) 6 ε and Ft(wt) 6 F (v) + ε. It follows from the
above that {ws} ∈ H0(v) and lim sup

s→∞
Fs(ws) 6 F (v). Finally, taking into account (2.2), we find

that, for every s ∈ N, Ms(ws) 6 0 a.e. in Ωs. Thus, condition (B′) of Theorem 1.1 is satisfied. �

From Theorems 1.1 and 1.2 and Proposition 3, we deduce the following results.

Theorem 2.3. Assume that condition (B1) of Proposition 1 and conditions (A′) and (A′′) of

Proposition 3 are satisfied. For every s ∈ N, let us be a function in Vs minimizing the functional

Fs +Gs on the set Vs, and let {s̄k} be an increasing sequence in N. Then there exist an increasing

sequence {sj} ⊂ {s̄k} and a function u ∈ V such that the function u minimizes the functional F +G
on the set V , ‖usj − qsju‖Lp(Ωsj

) → 0, and (Fsj +Gsj )(usj ) → (F +G)(u).

Theorem 2.4. Assume that condition (B1) of Proposition 1 and conditions (A′) and (A′′) of

Proposition 3 are satisfied. In addition, assume that the set V is convex and the functional G is

strictly convex. For every s ∈ N, let us be a function in Vs minimizing the functional Fs + Gs on

the set Vs. Then there exists a unique function u ∈ V minimizing the functional F +G on the set V
and the following relations hold: ‖us − qsu‖Lp(Ωs) → 0 and (Fs +Gs)(us) → (F +G)(u).

3. Examples

We first give an example of the mappings Ms and M satisfying conditions (A1)–(A3) stated in
Section 1, condition (B1) of Proposition 1, and conditions (A′) and (A′′) of Proposition 3. A similar
example related to the verification of a condition equivalent to condition (B′) of Theorem 1.1 was
considered in [8, Sect. 6]. However, as compared with [8] (more precisely, with [8, Example 6.3]), in
the example below, we use weaker assumptions on the involved obstacle functions.

Example 1. We assume that the following condition is satisfied:

for every sequence of measurable sets Hs ⊂ Ωs such that measHs → 0,

∫

Hs

µs dx→ 0. (3.1)

Let ϕ : Ω → R, and, for every s ∈ N, let ϕs : Ωs → R. Let {τs} ⊂ [0,+∞), τs → 0, and, for every
s ∈ N, let αs : Ω → R be a nonnegative function. We assume that

αs → 0 a.e. in Ω, (3.2)

∀s ∈ N ϕ− τs 6 ϕs 6 ϕ+ αs a.e. in Ωs. (3.3)

Let Φ: W 1,p(Ω) → R, and, for every s ∈ N, let Φs : W
1,p(Ωs) → R be a continuous convex

functional. We assume that the following condition is satisfied:

(∗) for every function v ∈W 1,p(Ω) and every bounded sequence {vs} ∈ H0(v), Φs(vs) → Φ(v).

We note that, by the convexity of the functionals Φs and condition (∗), the functional Φ is
convex.
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Let h : R → R be a nondecreasing convex function. We assume that the following conditions are
satisfied:

(i) there exist ψ ∈W 1,p(Ω) and c > 0 such that h(ψ) + Φ(ψ) 6 ϕ− c a.e. in Ω;

(ii) there exists a bounded sequence {ϕ̄s} ∈ H such that, for every s ∈ N, h(ϕ̄s) + Φs(ϕ̄s) 6 ϕs

a.e. in Ωs.

Now, for every s ∈ N, let Ms : W
1,p(Ωs) → F(Ωs) be the mapping such that, for every function

v ∈W 1,p(Ωs),

Ms(v) = h(v)− ϕs +Φs(v).

The mappings Ms satisfy conditions (A1)–(A3) stated in Section 1. Indeed, it follows from
condition (ii) that the mappings Ms satisfy condition (A1). The continuity of the function h and
the functionals Φs imply that the mappings Ms satisfy condition (A2). Using the convexity of the
function h and the functionals Φs, we easily establish that the mappings Ms satisfy condition (A3).

Further, let M : W 1,p(Ω) → F(Ω) be the mapping such that, for every function v ∈W 1,p(Ω),

M(v) = h(v) − ϕ+Φ(v).

Using conditions (C1)–(C3), the continuity of the function h, condition (∗), and assumptions (3.2)
and (3.3), in the same way as in [8, Example 6.3], we find that the mappings Ms and M satisfy
condition (B1) of Proposition 1.

Next, we show that the mapping M satisfies condition (A′) of Proposition 3. Let v ∈ W 1,p(Ω),
and let M(v) 6 0 a.e. in Ω. For every k ∈ N, we define

bk = (1− k−1)v + k−1ψ, εk = ck−1.

Obviously, {bk} ⊂ W 1,p(Ω) and {εk} ⊂ (0,+∞). It is also clear that bk → v strongly in W 1,p(Ω).
We fix an arbitrary k ∈ N. Using the convexity of the functional Φ and the function h, we obtain

M(bk) 6 (1− k−1)M(v) + k−1M(ψ) in Ω. (3.4)

Since M(v) 6 0 a.e. in Ω and, by condition (i), M(ψ) 6 −c a.e. in Ω, we deduce from (3.4) that
M(bk) 6 −εk a.e. in Ω. Thus, the mapping M satisfies condition (A′) of Proposition 3.

Finally, we show that the mappings Ms and M satisfy condition (A′′) of Proposition 3. Let
v ∈ W 1,p(Ω), let ε > 0, and let M(v) 6 −ε a.e. in Ω. By condition (C4), there exists a sequence
{vs} ∈ H0(v) such that Fs(vs) → F (v). For every s ∈ N, we define

λs = (‖vs − qsv‖L1(Ωs) + 1/s)1/2.

Since {vs} ∈ H0(v), we have

λs → 0. (3.5)

Now, for every s ∈ N, we define

v̄s = min{vs − λs, qsv}, Es = {vs − qsv > λs}.

It is easy to see that {v̄s} ∈ H and, for every s ∈ N,

‖v̄s − qsv‖Lp(Ωs) 6 ‖vs − qsv‖Lp(Ωs) + λs(measΩ)1/p, measEs 6 λs.

Then, by the inclusion {vs} ∈ H0(v) and (3.5), we have {v̄s} ∈ H0(v) and measEs → 0. The latter
fact and condition (3.1) imply that

∫

Es

µs dx→ 0,

∫

Es

|∇v|p dx→ 0. (3.6)
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Fixing an arbitrary s ∈ N, by the definition of the function v̄s and the set Es, we obtain

Fs(v̄s) = Fs(vs)−

∫

Es

fs(x,∇vs)dx+

∫

Es

fs(x,∇(qsv))dx.

Hence, using (1.1), we get

Fs(v̄s) 6 Fs(vs) + 2

∫

Es

µs dx+ c2

∫

Es

|∇v|p dx.

Then, taking into account (3.6) and the fact that Fs(vs) → F (v), we conclude that

lim sup
s→∞

Fs(v̄s) 6 F (v).

Using this inequality along with (1.1), the boundedness of the sequence of norms ‖µs‖L1(Ωs), and
the inclusion {v̄s} ∈ H0(v), we find that the sequence {v̄s} is bounded. Therefore, by condition (∗),
we have Φs(v̄s) → Φ(v). In view of this and the convergence τs → 0, there exists s̄ ∈ N such that

∀s ∈ N, s > s̄, τs + |Φs(v̄s)− Φ(v)| 6 ε. (3.7)

We define the sequence {ys} as follows:

ys =

{

ϕ̄s if s 6 s̄,

v̄s if s > s̄.

It is clear that {ys} ∈ H0(v) and lim sup
s→∞

Fs(ys) 6 F (v). We fix an arbitrary s ∈ N. If s 6 s̄, by

condition (ii), we have Ms(ys) 6 0 a.e. in Ωs. Now, let s > s̄. By (3.3) and the inequality M(v) 6 −ε
a.e. in Ω, there exists a set E ⊂ Ωs of measure zero such that, for every x ∈ Ωs \E,

ϕ(x) 6 ϕs(x) + τs, h(v(x)) − ϕ(x) + Φ(v) 6 −ε. (3.8)

We fix an arbitrary x ∈ Ωs \ E. Since v̄s(x) 6 v(x) and the function h is nondecreasing, we have

h(v̄s(x)) 6 h(v(x)). (3.9)

Using the equality ys = v̄s and (3.7)–(3.9), we obtain

Ms(ys)(x) =h(v̄s(x))− ϕs(x) + Φs(v̄s)

6h(v(x)) − ϕ(x) + Φ(v) + ϕ(x) − ϕs(x) + Φs(v̄s)− Φ(v)

6 τs + |Φs(v̄s)− Φ(v)| − ε 6 0.

Hence, Ms(ys) 6 0 a.e. in Ωs. Thus, for every s ∈ N, Ms(ys) 6 0 a.e. in Ωs. From the above
considerations, we conclude that the mappings Ms and M satisfy condition (A′′) of Proposition 3.

Remark 2. It should be noted in connection with the above example that, in [8, Example 6.3],
we assumed that the corresponding functions ϕ and ϕs satisfy conditions (3.2) and (3.3) and the
corresponding functionals Φ and Φs satisfy condition (∗). However, instead of conditions (i) and (ii),
we assumed in [8, Example 6.3] that the following condition is satisfied:

∀s ∈ N ϕs > h(0) + Φs(θs) + c a.e. in Ωs, (3.10)

where c > 0 and, for every s ∈ N, θs is the zero function on Ωs. It follows from conditions (3.2),
(3.3), (3.10), and (∗) that the same functions and functionals satisfy conditions (i) and (ii). Indeed,
we have {θs} ∈ H, the sequence {θs} is bounded, and, by condition (3.10), for every s ∈ N,
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h(θs) + Φs(θs) 6 ϕs a.e. in Ωs. Thus, condition (ii) is satisfied. Next, by (3.2), there exists a set
E′ ⊂ Ω of measure zero such that

∀x ∈ Ω \ E′ αs(x) → 0. (3.11)

In addition, by (3.3) and (3.10), there exists a set E′′ ⊂ Ω of measure zero such that

s ∈ N, x ∈ Ωs \ E
′′ =⇒ h(0) + Φs(θs) + c 6 ϕ(x) + αs(x). (3.12)

Finally, for every r ∈ N, we define

Er = Ω \
∞
⋃

s=r
Ωs,

and let E′′′ be the union of all sets Er, r ∈ N. By condition (C3), we have measE′′′ = 0. Now, let
x ∈ Ω \ (E′ ∪ E′′ ∪E′′′). We fix an arbitrary δ > 0. By (3.11), there exists k1 ∈ N such that

∀s ∈ N, s > k1, αs(x) 6 δ. (3.13)

We denote by θ the zero function on Ω. Since {θs} ∈ H0(θ), by condition (∗), we have Φs(θs) → Φ(θ).
Then there exists k2 ∈ N such that

∀s ∈ N, s > k2, Φ(θ) 6 Φs(θs) + δ. (3.14)

We define k = max{k1, k2}. Obviously, x ∈ Ω \ Ek. Therefore, there exists s ∈ N, s > k, such
that x ∈ Ωs. Thus, x ∈ Ωs \ E

′′. Then, by (3.12)–(3.14), we have h(0) + Φ(θ) + c 6 ϕ(x) + 2δ.
Consequently, h(θ) +Φ(θ) 6 ϕ− c a.e. in Ω. Thus, condition (i) is satisfied. However, in general, it
does not follow from conditions (i) and (ii) that condition (3.10) is satisfied. In this connection, see
Example 2 below.

Remark 3. We note that condition (ii) in Example 1 almost follows from other conditions in
this example. Indeed, by condition (i) in Example 1, there exists a set E ⊂ Ω of measure zero such
that

∀x ∈ Ω \ E h(ψ(x)) + Φ(ψ) 6 ϕ(x)− c. (3.15)

Moreover, by condition (∗) in Example 1, we have Φs(qsψ) → Φ(ψ). In view of this and the
convergence τs → 0, there exists s̃ ∈ N such that

∀s ∈ N, s > s̃, τs + |Φs(qsψ)− Φ(ψ)| 6 c. (3.16)

Let s ∈ N, s > s̃. By (3.3), there exists a set Ẽ ⊂ Ωs of measure zero such that

∀x ∈ Ωs \ Ẽ ϕ(x) 6 ϕs(x) + τs. (3.17)

It follows from (3.15)–(3.17) that h(qsψ) + Φs(qsψ) 6 ϕs a.e. in Ωs. Thus, setting, for every s ∈ N,
ϕ̄s = qsψ, we conclude that {ϕ̄s} ∈ H, the sequence {ϕ̄s} is bounded, and, for every s ∈ N, s > s̃,
h(ϕ̄s)+Φs(ϕ̄s) 6 ϕs a.e. in Ωs. This is what allows us to say that condition (ii) in Example 1 almost
follows from other conditions in this example.

We now consider two examples where conditions (∗), (i), and (ii) stated in Example 1 are
satisfied.

Example 2. Let ϕ : Ω → R, and assume that the following condition is satisfied:

(i′) there exists a function ϕ̄ ∈W 1,p(Ω) such that ϕ̄ 6 ϕ a.e. in Ω.

For every s ∈ N, let ϕs : Ωs → R. We assume that the following condition is satisfied:

(ii′) there exists a bounded sequence {ϕ̃s} ∈ H such that, for every s ∈ N, ϕ̃s 6 ϕs a.e. in Ωs.

Next, for every s ∈ N, let Φs : W
1,p(Ωs) → R be the functional such that, for every function

v ∈W 1,p(Ωs), Φs(v) =

∫

Ωs

v dx.
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We assume that the following condition is satisfied:

(∗′) there exists a nonnegative bounded measurable function b on Ω such that, for every open

cube Q ⊂ Ω, we have meas(Q ∩ Ωs) →

∫

Q
b dx.

By this condition, we have

∀v ∈ L1(Ω)

∫

Ωs

v dx→

∫

Ω

bv dx. (3.18)

Now, let Φ: W 1,p(Ω) → R be the functional such that ∀v ∈ W 1,p(Ω) Φ(v) =

∫

Ω
bv dx. By (3.18),

the functionals Φs and Φ satisfy condition (∗) in Example 1.
Next, let h : R → R be the function such that, for every t ∈ R, h(t) = t. We show that the

functions h, ϕ, and ϕs and the functionals Φs and Φ satisfy conditions (i) and (ii) in Example 1.
By condition (i′), there exists a function ϕ̄ ∈W 1,p(Ω) such that ϕ̄ 6 ϕ a.e. in Ω. We fix c > 0 such
that

∫

Ω

bϕ̄ dx 6 c

∫

Ω

b dx (3.19)

and define ψ = ϕ̄−c. Using the inequality ϕ̄ 6 ϕ a.e. in Ω and (3.19), we find that h(ψ)+Φ(ψ) 6 ϕ−c
a.e. in Ω. Thus, the functions h and ϕ and the functional Φ satisfy condition (i) in Example 1.
Further, by condition (ii′), there exists a bounded sequence {ϕ̃s} ∈ H such that, for every s ∈ N,
ϕ̃s 6 ϕs a.e. in Ωs. For every s ∈ N, we define

ts =
1

measΩs

∫

Ωs

ϕ̃s dx.

Using the Hölder inequality, we find that

∀s ∈ N |ts|(measΩs)
1/p 6 ‖ϕ̃s‖Lp(Ωs). (3.20)

Now, for every s ∈ N, we define ϕ̄s = ϕ̃s − |ts|. Obviously, {ϕ̄s} ∈ H. In addition, the boundedness
of the sequence {ϕ̃s} and (3.20) imply that the sequence {ϕ̄s} is bounded. It is also easy to see that,
for every s ∈ N, h(ϕ̄s)+Φs(ϕ̄s) 6 ϕs a.e. in Ωs. Thus, the functions h and ϕs and the functionals Φs

satisfy condition (ii) in Example 1.
Finally, assuming that the functions h and ϕs and the functionals Φs satisfy condition (3.10), we

find that, for every s ∈ N, ϕs > 0 a.e. in Ωs. However, in general, this is not true. Thus, in general,
it does not follow from conditions (i) and (ii) in Example 1 that condition (3.10) is satisfied.

Example 3. Let ϕ : Ω → R be a nonnegative function, and, for every s ∈ N, let ϕs : Ωs → R

be a nonnegative function. In addition, for every s ∈ N, let Φs : W
1,p(Ωs) → R be the functional

such that, for every function v ∈ W 1,p(Ωs), Φs(v) =

∫

Ωs

|v|p dx. We assume that condition (∗′) in

Example 2 is satisfied, and let Φ: W 1,p(Ω) → R be the functional such that

∀v ∈W 1,p(Ω) Φ(v) =

∫

Ω

b|v|p dx.

By (3.18), the functionals Φs and Φ satisfy condition (∗) in Example 1.
Next, let h : R → R be the function such that, for every t ∈ R, h(t) = t. We show that the

functions h, ϕ, and ϕs and the functionals Φs and Φ satisfy conditions (i) and (ii) in Example 1.
We fix c > 0 such that

cp−1

∫

Ω

b dx 6 2−p, (3.21)
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and let ψ : Ω → R be the function such that, for every x ∈ Ω, ψ(x) = −2c. Using (3.21), we find
that h(ψ) + Φ(ψ) 6 −c in Ω. Therefore, in view of the nonnegativity of the function ϕ, we have
h(ψ) + Φ(ψ) 6 ϕ − c in Ω. Thus, the functions h and ϕ and the functional Φ satisfy condition (i)
in Example 1. Further, for every s ∈ N, let ϕ̄s be the zero function on Ωs. Obviously, {ϕ̄s} ∈ H
and the sequence {ϕ̄s} is bounded. Moreover, by the nonnegativity of the functions ϕs, for every
s ∈ N, h(ϕ̄s) + Φs(ϕ̄s) 6 ϕs in Ωs. Thus, the functions h and ϕs and the functionals Φs satisfy
condition (ii) in Example 1.

In conclusion, we note that the fulfillment of conditions (C1)–(C5) is discussed, for instance, in [5].
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