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FINITE TOTALLY k-CLOSED GROUPS1

Dmitry Churikov and Cheryl E Praeger

For a positive integer k, a group G is said to be totally k-closed if in each of its faithful permutation

representations, say on a set Ω, G is the largest subgroup of Sym(Ω) which leaves invariant each of the G-orbits

in the induced action on Ω × · · · × Ω = Ωk. We prove that every finite abelian group G is totally (n(G) + 1)-
closed, but is not totally n(G)-closed, where n(G) is the number of invariant factors in the invariant factor

decomposition of G. In particular, we prove that for each k ≥ 2 and each prime p, there are infinitely many

finite abelian p-groups which are totally k-closed but not totally (k − 1)-closed. This result in the special case

k = 2 is due to Abdollahi and Arezoomand. We pose several open questions about total k-closure.
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Д. Чуриков, Ш. Прегер. Конечные вполне k-замкнутые группы.

Для натурального числа k группа G называется вполне k-замкнутой, если в каждом из ее точных

подстановочных представлений, например, на множестве Ω группа G является наибольшей подгруппой

Sym(Ω), оставляющей на месте как множество каждую G-орбиту индуцированного действия на Ω× · · · ×

Ω = Ωk. Доказано, что любая конечная абелева группа G вполне (n(G) + 1)-замкнута, но не вполне

n(G)-замкнута, где n(G) — количество инвариантных множителей в разложении G на инвариантные

множители. В частности, доказано, что для каждого натурального числа k ≥ 2 и для каждого простого

числа p существует бесконечно много конечных абелевых p-групп, которые вполне k-замкнуты, но не

вполне (k− 1)-замкнуты. В частном случае k = 2 этот результат был получен Абдоллахи и Арезумандом.

Поставлено несколько открытых вопросов о вполне k-замкнутых группах.
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1. Introduction

In 1969 Wielandt [7, Definition 5.3] introduced, for each positive integer k, the concept of the
k-closure of a permutation group G on a set Ω. The k-closure G(k),Ω of G is the set of all g ∈ Sym(Ω)
(permutations of Ω) such that g leaves invariant each G-orbit in the induced G-action on ordered
k-tuples from Ω. The k-closure G(k),Ω is a subgroup of Sym(Ω) containing G [7, Theorem 5.4],
and a permutation group G is said to be k-closed if G(k),Ω = G. Different faithful permutation
representations of the same group G may have quite different k-closures. For example, the symmetric
group S3 acts faithfully and intransitively on {1, 2, 3, 4, 5} with orbits {1, 2, 3} and {4, 5}, and in
this action its 2-closure is S3 × C2; while S3 is 2-closed in its natural action on {1, 2, 3}.

In 2016, D. F.Holt (see [8]) suggested a stronger concept independent of the permutation
representation, and this was studied first by Abdollahi and Arezoomand in [1] in the case k = 2. For
a positive integer k, a group G is said to be totally k-closed if G(k),Ω = G whenever G is faithfully
represented as a permutation group on Ω. The only totally 1-closed group is the trivial group
consisting of a single element (see Remark 2.3), while Abdollahi and Arezoomand [1, Theorem 2]
showed that a finite nilpotent group is totally 2-closed if and only if it is cyclic, or it is a direct
product of a generalised quaternion group and a cyclic group of odd order. Here we consider larger
values of k.

1This paper is based on the results of the 2020 Ural Workshop on Group Theory and Combinatorics.
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For a permutation group G ≤ Sym(Ω), and k ≥ 2, Wielandt [7, Theorem 5.8] proved that

G ≤ G(k),Ω ≤ G(k−1),Ω. (1.1)

Thus if G is totally (k − 1)-closed, then it is automatically totally k-closed. Moreover G = G(k),Ω

for sufficiently large k, since by [7, Theorem 5.12], this holds whenever there exist k − 1 points
α1, . . . , αk−1 ∈ Ω such that the only element of G fixing each αi is the identity. The inclusion (1.1)
does suggest that the family of totally k-closed groups might be larger than that of totally (k− 1)-
closed groups. We show that this is the case, even for abelian groups.

Theorem 1.1. Let k be an integer with k ≥ 2. Then, for each prime p, there are infinitely

many finite abelian p-groups which are totally k-closed but not totally (k − 1)-closed.

The result of Abdollahi and Arezoomand shows that the finite totally 2-closed abelian groups are
precisely the cyclic groups. It turns out, also for larger values of k, that the total k-closure property
for abelian groups is linked with the numbers of cyclic direct factors in their direct decompositions.
A study of these decompositions leads to useful bounds, from which we deduce Theorem 1.1.

According to the fundamental theorem for finite abelian groups, each nontrivial finite abelian
group G can be written as a direct product G = H1 × · · · × Hn, for some n ≥ 1, such that each
Hi

∼= Zdi , d1 > 1, and di|di+1 for 1 ≤ i < n. The integer n and the di are uniquely determined
by G, up to the order of the factors. The Hi are called the invariant factors of G, and we write
n(G) := n for the number of invariant factors. We also have the primary decomposition of G as
G =

∏

p∈π(G)Gp, where π(G) is the set of primes dividing |G| and Gp is the (unique) Sylow p-
subgroup of G. It is straightforward to see that n(G) = maxp∈π(G) n(Gp). Our main result is the
following theorem, from which we deduce Theorem 1.1.

Theorem 1.2. Let G be a finite abelian group with |G| > 1. Then G is totally (n(G)+1)-closed,
but is not totally n(G)-closed.

The following auxiliary assertion on the k-closure of the direct product of abelian permutation
p-groups may be of independent interest. It is proved in Section 2, and is used in Section 3 to reduce
the proof of Theorem 1.2 to the case of p-groups. For its statement it is convenient to use Syl(G) to
denote the set of all Sylow subgroups of a group G; if G is abelian, Syl(G) will consist of one Sylow
p-subgroup for each prime p ∈ π(G).

Theorem 1.3. Let G be a finite abelian permutation group on a set Ω, and k an integer, k ≥ 2.
Then G(k),Ω =

∏

P∈Syl(G) P
(k),Ω.

The results in our short paper serve to raise a number of open questions, and we record a
few here. The first relates to Theorem 1.2. It would be interesting to have a generalisation of the
classification by Abdollahi and Arezoomand [1, Theorem 2] of nilpotent totally 2-closed nilpotent
groups for larger values of k.

Problem 1. For k > 2 determine all finite nilpotent groups G that are totally k-closed.

As we noted above, the symmetric group S3 is not totally 2-closed. Indeed, it was shown by
Abdollahi, Arezoomand and Tracey [2, Theorem B] that a finite soluble group is totally 2-closed if
and only if it is nilpotent, hence known by [1, Theorem 2]. However it is not difficult to see that
it is totally 3-closed, since in every faithful permutation representation of G = S3 on a set Ω there
must be a G-orbit of length 3 or 6, and the stabiliser in G of two points α, β from such an orbit
is trivial. Hence by [7, Theorem 5.12], G = G(3),Ω. As a first step it would be interesting to know
which other non-nilpotent soluble groups are totally 3-closed.

Problem 2. Determine the finite soluble groups that are totally 3-closed.
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For some time it was believed that all finite totally 2-closed groups would be soluble, and it was
somewhat surprising to discover2 that exactly six of the sporadic simple groups are totally 2-closed,
namely J1, J3, J4, Ly, Th,M .

Problem 3. Find all the the totally 3-closed sporadic simple groups. More generally, for each

sporadic simple group G determine the least value of k such that G is totally k-closed.

The classification of the finite nonabelian simple totally 2-closed groups is still not complete,
and we refer the reader to the manuscript2 in preparation by M. Arezoomand, M.A. Iranmanesh,
C.E. Praeger, and G. Tracey for details of the status of this problem and other open questions about
total 2-closure.

2. Preliminaries

In this section we give some background theory, and in particular we prove Theorem 1.3. First
we state two results of Wielandt for convenience.

Theorem 2.1 (Wielandt, [7, Theorem 5.6]). Let G ≤ Sym(Ω), let k ≥ 1, and let x ∈ Sym(Ω).
Then x ∈ G(k),Ω if and only if, for all (α1, . . . , αk) ∈ Ωk, there exists g ∈ G such that αx

i = αg
i for

i = 1, . . . , k.

Theorem 2.2 (Wielandt, [7, Theorem 5.12]). Let G ≤ Sym(Ω) and k ≥ 1, and suppose that

α1, . . . , αk ∈ Ω such that Gα1...αk
= 1. Then G(k+1),Ω = G.

Next we discuss total 1-closure.

Remark 2.3. Suppose that G is a finite totally 1-closed group. Consider the regular represen-
tation of G on Ω = G. Since G is transitive on Ω it follows from Theorem 2.1 that G(1),Ω = Sym(Ω).
Thus, since G is totally 1-closed, it follows that Sym(Ω) = G is regular, and hence |G| ≤ 2.
However, if G = C2, then in the representation G = 〈(12)(34)〉 ≤ Sym(Ω) on Ω = {1, 2, 3, 4} we
have G(1),Ω = 〈(12), (34)〉 6= G. Hence G = 1 is the only possibility.

For a prime p |n, the largest p-power divisor of n is denoted by np; if π is a set of prime divisors
of n, then nπ :=

∏

p∈π np denotes the π-part of n. Recall that, for a finite group G, π(G) is the set
of prime divisors of |G|. For p ∈ π(G), we denote by Sylp(G) the set of Sylow p-subgroups of G. For
a subgroup G ≤ Sym(Ω) we denote by Orb(G) the set of G-orbits in Ω.

The proof of Theorem 1.3 is developed using ideas from [4]. First we present separately two
lemmas as they are general results about finite nilpotent groups.

Lemma 2.4. Let G be a finite nilpotent permutation group, let p ∈ π(G), k be a positive integer,

and P ∈ Sylp(G). Let ∆1, . . . ,∆k ∈ Orb(P ), ∆ =
⋃k

i=1∆i, and L be the subgroup of G consisting

of all elements fixing each ∆i setwise. Then L∆ = P∆.

Proof. By the definition of L, the subgroup P ≤ L, and hence P∆ ≤ L∆. We now prove the
converse. Since G is nilpotent, we have G = P × H, where H is the Hall p′-subgroup of G. Let
g ∈ L, so g = xy for some (unique) x ∈ P and y ∈ H. Since P ≤ L, we have y = x−1g ∈ L.

We claim that y∆ = 1, or equivalently, that y∆i = 1∆i
for each i = 1, . . . , k. Since y ∈ H ≤

CG(P ) it follows that, for each i, y∆i belongs to the centralizer Zi of the transitive group P∆i ≤
Sym(∆i), which is semiregular by [6, Theorem 3.2]. In particular |Zi| divides |∆i| which is a p-
power, so Zi is a p-group. Consequently, y∆i is a p-element. Since y ∈ H and |H| is coprime
to p, this implies that y∆i = 1, for each i, and hence that y∆ = 1, proving the claim. Thus,
g∆ = (xy)∆ = x∆y∆ = x∆ ∈ P∆, as required.

2Arezoomand M., Iranmanesh M.A., Praeger C.E., and Tracey G. Totally 2-closed finite simple groups,
in preparation.
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Lemma 2.5 [4, Lemma 2.4]. Let G ≤ Sym(Ω), where n = |Ω| and π ⊆ π(G). Suppose that G
is transitive and nilpotent, and let H be a Hall π-subgroup of G. Then

(1) the size of every H-orbit is equal to nπ, and

(2) G acts on Orb(H); moreover, the kernel of this action is equal to H.

Proof of Theorem 1.3

Let G be a finite abelian permutation group on a set Ω, and let k ≥ 2. Then by [7, Theorem 5.8]
and [7, Exercise 5.26], G(k),Ω is abelian, and π(G(k),Ω) = π(G). Let p ∈ π(G), and let P and Q be
the (unique) Sylow p-subgroups of G and G(k),Ω respectively.

Claim 1. P ≤ P (k),Ω ≤ Q, and Orb(P ) = Orb(Q).

Proof of Claim 1. By [7, Theorem 5.8] and [7, Exercise 5.28], the group P (k),Ω is a p-group, and
hence P ≤ P (k),Ω ≤ Q. It remains to prove that each P -orbit is a Q-orbit. Let ∆ be a P -orbit, and
let Γ be the G-orbit containing ∆. By (1.1), G ≤ G(k),Ω ≤ G(1),Ω, and hence G(k),Ω has the same
orbits as G in Ω. Thus Γ is also a G(k),Ω-orbit, and hence the Q-orbit ∆′ containing ∆ satisfies
∆ ⊆ ∆′ ⊆ Γ. The induced permutation groups GΓ and (G(k),Ω)Γ are both transitive and abelian,
so applying Lemma 2.5 to each of these groups with Hall subgroups PΓ, QΓ, respectively, yields
|∆| = |Γ|p = |∆′|. Thus ∆ = ∆′, and Claim 1 is proved. �

Claim 2. P (k),Ω = Q.

Proof of Claim 2. Let (α1, . . . , αk) ∈ Ωk, and g ∈ Q. By Theorem 2.1, there exists h ∈ G such that

(α1, . . . , αk)
g = (α1, . . . , αk)

h.

For each i = 1 . . . k, let ∆i be the Q-orbit containing αi. Then by Claim 1, each ∆i is also a P -orbit.
Since P EG, the group G permutes the P -orbits, and for each i, since αh

i = αg
i ∈ ∆i, it follows that

h fixes each ∆i setwise. Thus h lies in the subgroup L of Lemma 2.4, and setting ∆ =
⋃k

i=1∆i, it
follows from Lemma 2.4 that h∆ = u∆ for some u ∈ P . Thus

(α1, . . . , αk)
g = (α1, . . . , αk)

h = (α1, . . . , αk)
u.

Since such an element u ∈ P exists for each k-tuple of points and each g ∈ Q, it follows from
Theorem 2.1 that g ∈ P (k),Ω. Thus Q ≤ P (k),Ω, and the reverse inclusion holds by Claim 1. �

Now we complete the proof of Theorem 1.3. Since G(k),Ω is abelian, G(k),Ω is the direct product
of its Sylow subgroups. Further, for each p ∈ π(G) it follows from Claim 2 that the unique Sylow
p-subgroup of G(k),Ω is P (k),Ω, where P is the unique Sylow p-subgroup of G. �

3. Proof of the main results

Recall the definition of n(G) given in Section 1 for a finite abelian group G. We also set N(G) :=
∑

p∈π(G) n(Gp). If G ≤ Sym(Ω) then the base size b(G,Ω) of G is the smallest integer b for which
there exist α1, . . . , αb ∈ Ω such that Gα1...αb

= 1. Such a set α1, . . . , αb is called a base of G. Note
that, by Theorem 2.2, G = G(b+1),Ω, where b = b(G,Ω).

Lemma 3.1. Let G be a finite abelian group and suppose that G has a faithful permutation

representation on a finite set Ω. Then b(G,Ω) ≤ N(G), and equality holds for some Ω.

Proof. Let G =
∏

p∈π(G)Gp with π(G) the set of primes dividing |G|, and Gp the Sylow
p-subgroup of G, for p ∈ π(G). Then, by the definition of N(G) and the n(Gp), G has a direct
decomposition G = H1 × · · · × Hn, with each Hi nontrivial and cyclic of prime power order, and
n = N(G). For each i, Hi acts regularly on Ωi := Hi by (right) multiplication, and G acts faithfully
on Ω := ∪n

i=1Ωi (where Hj acts trivially on Ωi for i 6= j). Thus the G-orbits in Ω are the sets Ωi, and
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for each i the subgroup Hi acts nontrivially only on the orbit Ωi. Thus each base must contain a point
from each of the G-orbits. It follows that the base size equals N(G) for this faithful permutation
representation of G.

Now consider an arbitrary faithful permutation representation of G, that is, suppose that G ≤
Sym(Ω). We prove by induction on N(G) that G has base size at most N(G). Now H1 = 〈h1〉 ∼= Zpa ,
for some prime p and positive integer a, and as G acts faithfully on Ω there exists α ∈ Ω which

is not fixed by hp
a−1

1 . This implies that Gα ∩ H1 = 1. If N(G) = 1 then G = H1 is a cyclic p-
group, and Gα = 1, so {α} is a base. Assume now that N(G) ≥ 2 and that the assertion holds for
groups X with N(X) < N(G). Since Gα ∩H1 = 1, we have Gα

∼= (GαH1)/H1 ≤ G/H1
∼=

∏n
i=2 Hi

so N(Gα) ≤ n− 1 = N(G) − 1, and hence by induction, Gα has a base α1, . . . , αs in Ω \ {α} with
s ≤ N(G)− 1. Then α1, . . . , αs, α is a base for G in Ω, and the result follows by induction.

We now prove Theorem 1.2 in the case of p-groups. The second part of the lemma is proved using
a construction developed from ideas in the book of Chen and Ponomarenko [3, Proposition 2.2.26].
An element τ ∈ Sym(Ω) is called a cycle if it is not the identity and has exactly one cycle of length
greater than 1 in its disjoint cycle representation; the length of this cycle is denoted |τ |. Two cycles
are said to be independent if the sets of points they move are disjoint.

Lemma 3.2. Let G be a finite abelian p-group with |G| > 1. Then G is totally (n(G)+1)-closed,
but is not totally n(G)-closed.

Proof. Since G is an abelian p-group, N(G) = n(G). By Lemma 3.1, if G is faithfully
represented as a subgroup of Sym(Ω), then b := b(G,Ω) ≤ n(G), and by Theorem 2.2, G =
G(b+1),Ω. It follows from (1.1) that G = G(n(G)+1),Ω. Since this holds for all faithful permutation
representations of G, G is totally (n(G) + 1)-closed.

As discussed in Section 1, G ∼= Zd1 × Zd2 × . . . × Zdn , with d1 > 1, di|di+1 for 1 ≤ i < n, and
n = n(G). Let Ω be a set of size d1+

∑n
i=1 di, and let τ0, τ1, . . . , τn ∈ Sym(Ω) be pairwise independent

cycles on Ω such that |τ0| = d1, and |τi| = di for i = 1 . . . n. Let H1 = 〈τ0τ1〉 and Hi = 〈τ−1
0 τi〉 for

i = 2 . . . n, and let H = 〈H1, . . . ,Hn〉. We claim that H ∼= G. Indeed, the groups Hi commute, and
an easy proof by induction on n shows that Hi ∩ 〈H1, . . . ,Hi−1,Hi+1, . . . ,Hn〉 = 1, for i = 1 . . . n.
Thus H = H1 × . . . ×Hn, with Hi

∼= Zdi for i = 1 . . . n, proving the claim.
Now we will use Theorem 2.1 to show that τ0 ∈ H(n),Ω. Let (α1, . . . , αn) ∈ Ωn, and for

i = 0, . . . , n, let ∆i denote the set of points of Ω moved by τi, so that {∆0, . . . ,∆n} is the set
of H-orbits in Ω. Since H has n + 1 nontrivial orbits, there exists k ∈ {0, 1, . . . , n} such that
∆k ∩ {α1, . . . , αn} = ∅. Define a permutation τ as follows:

τ =

{

1, if k = 0,

τ0τ
−1
k , if 1 ≤ k ≤ n.

By definition, τ ∈ H. If τ = 1, then both τ and τ0 fix each of the αi so (α1, . . . , αn)
τ0 = (α1, . . . , αn)

τ .
On the other hand, if τ = τ0τ

−1
k for some k, then τ and τ0 induce the same permutation on Ω \∆k,

and again we have (α1, . . . , αn)
τ0 = (α1, . . . , αn)

τ . Thus, by Theorem 2.1, τ0 ∈ H(n),Ω. By the
construction, τ0 /∈ H, and hence H 6= H(n),Ω. Thus G is not totally n-closed.

Remark 3.3. Theorem 1.1 follows from Lemma 3.2 since, for each integer k ≥ 2, there are
infinitely many finite abelian p-groups with k invariant factors. �

Finally we prove Theorem 1.2 for an arbitrary finite abelian group G with |G| > 1. Suppose
that G is faithfully represented on a set Ω. Since n(G) = maxp∈π(G) n(Gp), every Sylow subgroup

Gp of G is (n(G) + 1)-closed by Lemma 3.2, and hence, by Theorem 1.3, we have G(n(G)+1),Ω = G.
Thus G is totally (n(G) + 1)-closed.

Set n := n(G). If n = 1 then, since |G| > 1, it follows from Remark 2.3 that G is not totally
1-closed. Thus we may assume that n ≥ 2. Now n(G) = maxp∈π(G) n(Gp), and hence we have
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n = n(Gq) for some q ∈ π(G). By Lemma 3.2, Gq is not totally n-closed, so there exists a set Ωq

such that Gq acts faithfully on Ωq and G(n),Ωq 6= Gq. There is nothing further to prove if G = Gq

so we may assume that |π(G)| ≥ 2. For each p ∈ π(G) \ {q}, let Ωp = Gp, and consider Gp acting
regularly on Ωp by right multiplication. Thus G acts faithfully on Ω := ∪p∈π(G)Ωp. Since n ≥ 2, it
follows from Theorem 1.3 that

G(n),Ω =
∏

p∈π(G)

(Gp)
(n),Ωp = (Gq)

(n),Ωq ×
∏

p∈π(G)
p 6=q

(Gp)
(n),Ωp ,

which is not equal to G, because (Gq)
(n),Ωq > Gq and for every p ∈ π(G), p 6= q the group Gp

is n-closed as a regular group. Thus, G is not totally n-closed, and the proof of Theorem 1.2 is
complete. �
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