ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2021, Vol. 315, Suppl. 1, pp. S55-S66. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Vol. 26, No. 4, pp. 64-75.

On the Norms of Boman–Shapiro Difference Operators

A. G. Babenko^{1,2,*} and Yu. V. Kryakin^{3,**}

Received July 13, 2020; revised November 15, 2020; accepted November 23, 2020

Abstract—For given $k \in \mathbb{N}$ and h > 0, an exact inequality $||W_{2k}(f,h)||_C \leq C_k ||f||_C$ is considered on the space $C = C(\mathbb{R})$ of continuous functions bounded on the real axis $\mathbb{R} = (-\infty, \infty)$ for the Boman–Shapiro difference operator $W_{2k}(f,h)(x) := \frac{(-1)^k}{h} \int_{-h}^{h} \binom{2k}{k}^{-1} \widehat{\Delta}_t^{2k} f(x) \left(1 - \frac{|t|}{h}\right) dt$, where $\widehat{\Delta}_t^{2k} f(x) := \sum_{j=0}^{2k} (-1)^j \binom{2k}{j} f(x+jt-kt)$ is the central finite difference of a function f of order 2k with step t. For each fixed $k \in \mathbb{N}$, the exact constant C_k in the above inequality is the norm of the operator $W_{2k}(\cdot,h)$ from C to C. It is proved that C_k is independent of h and increases in k. A simple method is proposed for the calculation of the constant $C_* = \lim_{k\to\infty} C_k = 2.6699263\ldots$ with accuracy 10^{-7} . We also consider the problem of extending a continuous function f from the interval [-1,1] to the axis \mathbb{R} . For extensions $g_f := g_{f,k,h}, k \in \mathbb{N}, 0 < h < 1/(2k), \text{ of functions } f \in C[-1,1], \text{ we obtain new two-sided estimates for the exact constant <math>C_k^*$ in the inequality $||W_{2k}(g_f,h)||_{C(\mathbb{R})} \leq C_k^* \omega_{2k}(f,h)$, where $\omega_{2k}(f,h)$ is the modulus of continuity of f of order 2k. Specifically, for every positive integer $k \geq 6$ and every $h \in (0, 1/(2k))$, we prove the double inequality $5/12 \leq C_k^* < (2+e^{-2}) C_*$.

Keywords: difference operator, kth modulus of continuity, norm estimate.

DOI: 10.1134/S0081543821060055

¹Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia

²Ural Federal University, Yekaterinburg, 620000 Russia

³Mathematical Institute, University of Wroclaw, 50-384 Wroclaw, Poland

e-mail: *babenko@imm.uran.ru, **kryakin@math.uni.wroc.pl