Tom 26 № 4 2020

УДК 512. 544

О СВЯЗИ НЕКОТОРЫХ ГРУПП, ПОРОЖДЕННЫХ 3-ТРАНСПОЗИЦИЯМИ, С ГРУППАМИ КОКСТЕРА¹

В. М. Синицин, А. И. Созутов

Группы Кокстера, более известные как группы, порожденные отражениями, имеют многочисленные приложения в различных областях математики и за ее пределами. Группы с 3-транспозициями Фишера также связаны со многими структурами: конечные простые группы, тройные графы, геометрии различных пространств, алгебры Ли и др. Пересечение этих классов групп состоит из конечных групп Вейля $W(A_n) \simeq S_{n+1}, W(D_n), W(E_n)$ (n=6,7,8) простых конечномерных алгебр и групп Ли. В работе продолжается исследование связи между конечными группами $Sp_{2l}(2)$ и $O_{2l}^{\pm}(2)$ из пп. (ii)–(iii) теоремы Фишера и бесконечными группами Кокстера. Организующей основой исследуемой связи являются общие графыдеревья Кокстера Γ_n с вершинами $1, \ldots, n$. Каждой вершине i графа Γ_n ставятся в соответствие порождающая инволюция (отражение) s_i группы Кокстера G_n , базисный вектор e_i пространства V_n над полем F_2 из двух элементов и порождающая трансвекция w_i подгруппы $W_n = \langle w_1, \dots, w_n \rangle$ из $SL(V_n) = SL_n(2)$. Графу Γ_n соответствует точно одна группа Кокстера ранга n: $G_n = \langle s_1, \dots, s_n \mid (s_i s_j)^{m_{ij}}, m_{ij} \leq 3 \rangle$, где $m_{ii}=1, \ 1 \leq i < j \leq n$ и $m_{ij}=3$ или $m_{ij}=2$ в зависимости от того, есть в Γ_n ребро (i,j) или такого ребра нет. Определенная по графу Γ_n форма превращает V_n в ортогональное пространство, группа изометрий W_n которого порождается указанными выше трансвекциями (3-транспозциями) w_1, \dots, w_n ; при этом в W_n выполняются соотношения $(w_iw_j)^{m_{ij}}=1,$ и, значит, отображение $s_i\to w_i$ $(i=1,\ldots,n)$ продолжается до сюрьективного гомоморфима $G_n o W_n$. В предыдущей работе авторов для всех групп $W_n = O_{2l}^{\pm 1}(2) \; (n=2l \geq 6)$ и $W_n = Sp_{2l}(2) \; (n=2l+1 \geq 7)$ был указан алгоритм перечисления соответствующих им графов-деревьев Γ_n с помощью группировки их по E-сериям вложенных друг в друга графов. В настоящей работе установлена самая тесная генетическая связь между группами $O_{2l}^\pm(2),\,Sp_{2l}(2) imes\mathbb{Z}_2$ $(3 \le l \le 10)$ и соответствующими (бесконечными) группами Кокстера G_n с разницей в генетических кодах точно на один ген (соотношение). Для групп W_n с графами Γ_n из E-серий $\{E_n\}$, $\{I_n\}$, $\{J_n\}$ и $\{K_n\}$ дополнительные слова-соотношения выписаны в явном виде.

Ключевые слова: группы с 3-транспозициями, графы и группы Кокстера, генетические коды.

V. M. Sinitsin, A. I. Sozutov. On the connection of some groups generated by 3-transpositions with Coxeter groups.

Coxeter groups, more commonly known as reflection-generated groups, have numerous applications in various fields of mathematics and beyond. Groups with Fischer's 3-transpositions are also related to many structures: finite simple groups, triple graphs, geometries of various spaces, Lie algebras, etc. The intersection of these classes of groups consists of finite Weyl groups $W(A_n) \simeq S_{n+1}$, $W(D_n)$, and $W(E_n)$ (n = 6, 7, 8) of simple finite-dimensional algebras and Lie groups. The paper continues the study of the connection between the finite groups $Sp_{2l}(2)$ and $O_{2l}^{\pm}(2)$ from clauses (ii)–(iii) of Fischer's theorem and infinite Coxeter groups. The organizing basis of the connection under study is general Coxeter tree graphs Γ_n with vertices $1, \ldots, n$. To each vertex i of the graph Γ_n , we assign the generating involution (reflection) s_i of the Coxeter group G_n , the basis vector e_i of the space V_n over the field F_2 of two elements, and the generating transvection w_i of the subgroup $W_n =$ $\langle w_1,\ldots,w_n\rangle$ of $SL(V_n)=SL_n(2)$. The graph Γ_n corresponds to exactly one Coxeter group of rank $n\colon G_n=$ $\langle s_1, \ldots, s_n \mid (s_i s_j)^{m_{ij}}, m_{ij} \leq 3 \rangle$, where $m_{ii} = 1, 1 \leq i < j \leq n$, and $m_{ij} = 3$ or $m_{ij} = 2$ depending on whether Γ_n contains the edge (i, j). The form defined by the graph Γ_n turns V_n into an orthogonal space whose isometry group W_n is generated by the mentioned transvections (3-transpositions) w_1, \ldots, w_n ; in this case, the relations $(w_i w_j)^{m_{ij}} = 1$ hold in W_n and, therefore, the mapping $s_i \to w_i$ (i = 1, ..., n) is continued to the surjective homomorphism $G_n \to W_n$. In the authors' previous paper, for all groups $W_n = O_{2l}^{\pm}(2)$ $(n = 2l \ge 6)$ and $W_n = Sp_{2l}(2)$ $(n = 2l + 1 \ge 7)$, an algorithm was given for enumerating the corresponding tree graphs Γ_n by grouping them according to E-series of nested graphs. In the present paper, a close genetic connection is established between the groups $O_{2l}^{\pm}(2)$ and $Sp_{2l}(2) \times \mathbb{Z}_2$ $(3 \leq l \leq 10)$ and the corresponding (infinite) Coxeter groups G_n with the difference in their genetic codes by exactly one gene (relation). For the groups W_n with the graphs Γ_n from the E-series $\{E_n\}$, $\{I_n\}$, $\{J_n\}$, and $\{K_n\}$, additional word relations are written explicitly.

Keywords: groups with 3-transpositions, Coxeter graphs and groups, genetic codes.

MSC: 20C40

DOI: 10.21538/0134-4889-2020-26-4-234-243

 $^{^1}$ Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-01-00566 А.

Введение

Группы с 3-транспозициями связаны со многими математическими структурами; это конечные простые группы [2;6], тройные графы [2, с.125], геометрии пространств Фишера, геометрии ортогональных, симплектических, унитарных и др. пространств [3;5;7;8], алгебры Ли [9; 10], алгебры вершинных операторов и др. (см., например, [11;12]).

В данной статье установлена тесная "генетическая связь" групп $Sp_{2l}(2)$ и $O_{2l}^{\pm}(2)$ с некоторыми группами (системами) Кокстера, известными во многих областях математики как группы, порожденные отражениями [13, с. 286–293; 14, гл. 9]. Генетическим кодом или просто кодом группы G называется перечень ее порождающих элементов S и определяющих соотношений R (см. [14, с. 10]). Группа Кокстера G (система Кокстера (G, S)) задается кодом, однозначно определяемым матрицей и графом Кокстера [13, с. 24-25].

В работе доказано, что конечные группы

$$O_{2l}^{\pm}(2)(5 \le l \le 10)$$
 и $Sp_{2l}(2) \times \mathbb{Z}_2$ $(4 \le l \le 9)$

(см. пояснения в замечании 3) могут быть получены из подходящих бесконечных групп Кокстера

$$G_n = \langle s_1, \dots, s_n \mid R_n \rangle$$
 ($n = 2l$ и $n = 2l + 1$ соответственно)

с помощью точно одного дополнительного соотношения.

Системы порождающих 3-транспозиций групп $O_{2l}^{\pm}(2)$ и $Sp_{2l}(2)$ с графами-деревьями Кокстера Γ_n , в которых проявляется указанная связь с группами Кокстера G_n , были частично описаны в [8], а в общем случае — в предыдущей работе авторов (Tp. Ин-та математи-ки и механики SpO PAH. 2016. Т. 22, № 3. С. 251–258). Там же графы Γ_n были снабжены разметкой, указывающей, для каких групп $W_n \leq SL_n(2)$ граф Γ_n является графом Кокстера (подробнее см. предложение 1). Мы рассматриваем четыре серии графов Γ_n и групп W_n , детально исследованных в [8]:

$$W(J_n), \ n \ge 9: \ \begin{picture}(20,0) \put(0,0){\line(1,0){150}} \put($$

Смысл разметки поясняется в предложении 1.

Каждому графу-дереву Γ_n соответствует группа Кокстера $G_n = G(\Gamma_n)$:

$$G_n = \langle s_1, \ldots, s_n \, | \, s_i^2, \, (s_k s_j)^2, \, (s_i s_j)^3, \,$$
где $1 \leq i, j, k \leq n, \, (k, j) \notin E(\Gamma_n), \, (i, j) \in E(\Gamma_n) \rangle.$ (1)

Через $X_n = X_n(\Gamma_n)$ обозначим группу

$$X_n = \langle s_1, \dots, s_n \mid R_n, \ w^2 \rangle, \tag{2}$$

где R_n — соотношения Кокстера из (1), а слово $w = w(\Gamma_n)$ определено в (3)–(6):

$$\Gamma_n = E_n \colon w = s_4^v s_9, \ v = s_3 s_2 s_1 s_5 s_6 s_7 s_8 s_3 s_2 s_5 s_3 s_4 s_6 s_5 s_3 s_2 s_7 s_6 s_5 s_3 s_4 s_1 s_2 s_3 s_5 s_6 s_7 s_8; \tag{3}$$

$$\Gamma_n = I_n : w = s_4^v s_7, \ v = s_3 s_2 s_1 s_5 s_6 s_3 s_2 s_5 s_3 s_4;$$
 (4)

$$\Gamma_n = J_n \colon w = s_4^v s_9$$
, где $v = s_3 s_2 s_1 s_5 s_6 s_7 s_3 s_2 s_5 s_6 s_3 s_5 s_4 s_3 s_2 s_1$ или (5)

 $v = s_3 s_2 s_1 s_5 s_6 s_7 s_8 s_3 s_2 s_5 s_3 s_4 s_6 s_5 s_3 s_2 s_7 s_6 s_5 s_3 s_4 s_1 s_2 s_3 s_5 s_6 s_7 s_8;$

$$\Gamma_n = K_n : w = s_4^v s_8, \quad v = s_3 s_2 s_1 s_5 s_6 s_7 s_3 s_5 s_6 s_2 s_3 s_5 s_4 s_3 s_2 s_1.$$
 (6)

Сформулируем основной результат данной работы.

Теорема. При $7 \le n \le 20$ группы X_n , заданные копредставлениями (2) и словами w из (3)–(6), конечны, u для них справедливы следующие утверждения.

- **1.** Для групп $X_n = X(E_n)$, определенных в (2) и (3), имеют место изоморфизмы
- i) $X_{4k} \simeq O_{4k}^-(2)$ при нечетном k и $X_{4k} \simeq O_{4k}^+(2)$ при четном k;
- іі) $X_{4k+2} \simeq O_{4k+2}^-(2)$ при нечетном k и $X_{4k+2} \simeq O_{4k+2}^+(2)$ при четном k;
- iii) $X_{4k+3} \simeq Sp_{4k+2}(2) \times \mathbb{Z}_2$.
 - **2.** Для групп $X_n = X(I_n)$, определенных в (2) и (4), имеют место изоморфизмы
- i) $X_{4k} \simeq O_{4k}^-(2)$ при четном k и $X_{4k} \simeq O_{4k}^+(2)$ при нечетном k;
- ii) $X_{4k+1} \simeq Sp_{4k}(2) \times \mathbb{Z}_2;$
- ііі) $X_{4k+2} \simeq O_{4k+2}^-(2)$ при нечетном k и $X_{4k+2} \simeq O_{4k+2}^+(2)$ при четном k.
 - **3.** Для групп $X_n = X(J_n)$, определенных в (2) и (5), имеют место изоморфизмы
 - i) $X_{4k} \simeq O_{4k}^{-}(2)$ при нечетном k и $X_{4k} \simeq O_{4k}^{+}(2)$ при четном k;
- ii) $X_{4k+1} \simeq Sp_{4k}(2) \times \mathbb{Z}_2;$
- ііі) $X_{4k+2} \simeq O_{4k+2}^+(2)$ при нечетном k и $X_{4k+2} \simeq O_{4k+2}^-(2)$ при четном k.
 - **4.** Группа $X_{2k+1} = X(K_{2k+1})$, определенная в (2) и (6), изоморфна группе $Sp_{2k}(2) \times \mathbb{Z}_2$.

З амечание 1. Для групп $O_{2l}^\pm(2)$, $Sp_{2l}(2)\times\mathbb{Z}_2$ из теоремы число найденных кодов различно. Так, например, группы $O_8^-(2)$ и $O_{12}^+(2)$ получили по одному коду, $O_{14}^\pm(2)$ — по два кода (графы J_n с "двойной кодировкой"), $O_{16}^+(2)$ — три кода, а $Sp_8(2)\times\mathbb{Z}_2$ — четыре кода.

1. Предварительные результаты

Поясним подробнее смысл меток над вершинами рассматриваемых графов Γ_n .

Предложение 1. Справедливы следующие утверждения.

- 1. Γ_n граф Кокстера группы $W_n = W(\Gamma_n)$ изометрий квадратичной формы F пространства V_n над полем F_2 порядка 2 c базисом (e_1, \ldots, e_n) .
- 2. Если метка вершины n равна O^{\pm} , то $W_n \simeq O_n^{\pm}(2)$, при этом n четное число.
- 3. Если над вершиной n стоит метка Sp, то $W_n \simeq Sp_{n-1}(2)$ и n нечетное число.
- 4. Если метка вершины n равна 2^{n-1} , то группа W_n обладает нормальной элементарной абелевой 2-подгруппой порядка 2^{n-1} , n нечетное число, $W_n \simeq 2^{n-1}.O_{n-1}^{\pm}(2)$ и метки вершин n-1 и n+1 совпадают.
- 5. Последовательность меток O^{\pm} и Sp в E-сериях $\{E_n\}$, $\{I_n\}$, $\{J_n\}$ имеет период 8, m. e. группы W_n и W_{n+8} одного типа, а в серии $\{K_n\}$ период 2.

Доказательство. Докажем сначала утверждение 1. По лемме 20 из [8] $W_n = \langle w_1, \dots, w_n \rangle$ — группа изометрий квадратичной формы F_n линейного пространства V_n над полем F_2 с базисом (e_1, \dots, e_n) , где

$$F_n(x) = \sum_{i \in \Gamma_n} x_i^2 + \sum_{(i,j) \in \Gamma_n} x_i x_j \quad \text{для произвольного вектора} \quad x = \sum_{i=1}^n x_i e_i \text{ из } V_n. \tag{7}$$

Стандартно определяется симплектическая форма f_n на V_n :

$$f_n(x,y) = F_n(x+y) + F_n(x) + F_n(y).$$
 (8)

Трансвекции w_i : $x \to x + f_n(e_i, x) \cdot e_i$, где $i = 1, \dots, n$, являются 3-транспозициями группы W_n [8, лемма 20], при этом выполняются соотношения

$$w_i^2 = (w_k w_j)^2 = (w_i w_j)^3 = 1$$
, где $1 \le i, j, k \le n$, $(k, j) \notin E(\Gamma_n)$, $(i, j) \in E(\Gamma_n)$. (9)

Следовательно, Γ_n — граф Кокстера группы W_n в системе порождающих 3-транспозиций $\{w_1,\ldots,w_n\}$, и утверждение 1 предложения доказано.

Доказательства утверждений 2—4 дословно повторяют доказательство соответствующей части предложения 1 из работы первого автора (Tp. Un-ma mame mamu w u me xaнu w <math>ypO PAH. 2019. Т. 25, № 4. С. 184—188). Утверждение 5 для рассматриваемых в работе графов допускает непосредственную проверку.

Предложение доказано.

Нам понадобятся некоторые свойства групп $O_{2l}^{\pm}(2)$ и $Sp_{2l}(2)$ из [15, теоремы 6.1.1, 6.3.4, табл. 6.4.1] и [16, пп. 3.1.5., 3.2.1, 3.4.1]. Приведем их в виде предложений.

Предложение 2. При $l \geq 4$ группа $O_{2l}^{\pm}(2)$ порождена трансвекциями, сохраняющими соответствующую квадратичную форму, ее коммутант $\Omega_{2l}^{\pm}(2)$ имеет индекс 2 и является простой группой Шевалле: $\Omega_{2l}^{+}(2) = D_{l}(2)$, $\Omega_{2l}^{-}(2) = {}^{2}D_{l}(2)$.

Предложение 3. Группа $Sp_{2l}(2)$ порождена 3-транспозициями (симплектическими трансвекциями), при $l \geq 3$ проста (совпадает с группой $PSp_{2l}(2)$), не имеет внешних автоморфизмов и является группой Шевалле $C_l(2)$.

Обозначим через x_1, \ldots, x_n образы порождающих элементов s_1, \ldots, s_n в копредставлениях групп X_n из (2).

Лемма 1. Отображения $s_1 \to x_i$, $x_i \to w_i$ и $s_i \to w_i$ продолжаются до сюрьективных гомоморфизмов $\varphi_1 \colon G_n \to X_n$, $\varphi_2 \colon X_n \to W_n$ и $\varphi_0 \colon G_n \to W_n$ соответственно так, что $\varphi_0 = \varphi_2 \varphi_1$ и соответствующая диаграмма коммутативна.

Д о к а з а т е л ь с т в о. В силу теоремы Дика [15, теорема 12.2.1], заданий групп G_n (1), X_n (2) и выполнимости в W_n соотношений (9) отображения $s_1 \to x_i$ и $s_i \to w_i$ продолжаются до сюрьективных гомоморфизмов φ_1 и φ_0 соответственно. Для обоснования гомоморфизма φ_2 нужно показать, что $\varphi_0(w^2) = 1$ в группе W_n для соответствующего слова w из (3)–(6).

Рассмотрим случай $\Gamma_n=E_n$, для которого $w=s_4^vs_9$ из (3). Группа $G_8=G(E_8)$ изоморфна группе Вейля $W(E_8)$ [13] и содержится во всех группах $G_n=G(E_n)$ при $n\geq 8$. Инволюция $s=s_4^v$ в группе $W(E_8)$ является симметрией w_r , определенной максимальным положительным корнем $r=2p_1+4p_2+6p_3+3p_4+5p_5+4p_6+3p_7+2p_8$ в корневой системе типа E_8 с фундаментальной системой корней $\{p_1,\ldots,p_8\}$ (см. [13, с. 314]). Ввиду [8, лемма 3] $\varphi_0(s_r)=w_{r'}$, где $r'=e_4+e_5+e_7\in V_n$. В пространстве V_n векторы r' и e_9 ортогональны относительно формы f_n , и потому $\varphi_0(w^2)=(w_{r'}w_9)^2=1$.

Далее, серия графов I_n начинается с графа E_6 , а слово $w=s_4^vs_7$ берется из соотношения (4). Как и выше, $W(E_6) \leq G_n = G(I_n)$ при $n \geq 6$, и инволюция s_4^v является симметрией w_r , определенной максимальным положительным корнем $r=p_1+2p_2+3p_3+2p_4+2p_5+p_6$ корневой системы типа E_6 [13, с. 310]. В пространстве $V(I_7)$ векторы $r'=e_1+e_3+e_6$ и e_7 ортогональны относительно формы f_n , и $\varphi_0(w^2)=(w_{r'}w_7)^2=1$.

Для групп $W_n=W(J_n)$ в (5) дано два значения слова w. Как и в случае $\Gamma_n=E_n$, используем вложения $W(E_8)\leq G_n$ при $n\geq 9$. Для второго значения слова w доказательство равенства $\varphi_0(w^2)=1$ дословно повторяет доказательство для случая $\Gamma_n=E_n$. При первом значении слова w инволюция s_4^v является симметрией w_r , определенной максимальным положительным корнем $r=2p_1+3p_2+4p_3+2p_4+3p_5+2p_6+p_7$ корневой системы типа E_7 (см. [13, с. 312]). Для "проекции" $r'=e_2+e_5+e_7$ в $V(E_9)$ выполняются равенства $f_9(r',e_9)=0$ и $\varphi_0(w^2)=(w_{r'}w_9)^2=1$.

Наконец, для $\Gamma_n=K_n$ аналогично получаем $W(E_7)\leq G_n$, $s_4^v=w_r$ — симметрия из $W(E_7)$ для $r=2p_1+3p_2+4p_3+2p_4+3p_5+2p_6+p_7$, $r'=e_2+e_5+e_7$, $f_8(w_{r'},e_8)=0$ и $\varphi_0(w^2)=(w_{r'}w_8)^2=1$. Лемма доказана.

З а м е ч а н и е 2. Используя геометрическое представление групп Кокстера [13, §4], можно показать, что порядки элементов $w(s_1,\ldots,s_m)$ из (3)–(6) в группах G_m бесконечны.

Согласно заданию (2) групп X_n (генетический) код группы X_n содержится в коде группы X_{n+1} . Следовательно, группа X_n вкладывается в X_{n+1} либо изоморфно, либо как некоторая фактор-группа \overline{X}_n группы X_n . С помощью системы GAP для $n \leq 20$ были найдены индексы $[X_{n+1}:X_n]$ и порядки групп X_n , они оказались конечными. Результат сформулируем в виде утверждения.

Предложение 4. В предположении изоморфной вложимости $X_n < X_{n+1}$ для $6 \le n \le 20$ порядки групп $X_n = X(E_n)$ следующие:

```
\begin{split} |X(E_6)| &= 51840 = |W(E_6)| = |O_6^-(2)|; \\ |X(E_7)| &= 2903040 = |W(E_7)| = 2 \cdot |Sp_6(2)|; \\ |X(E_8)| &= 240 \cdot |W(E_7)| = |W(E_8)| = 2 \cdot |O_8^+(2)|; \\ |X(E_9)| &= 256 \cdot |W(E_8)| = 2^9 \cdot |O_8^+(2)|; \\ |X(E_{10})| &= 527 \cdot |X(E_9)| = 2 \cdot |O_{10}^+(2)|; \\ |X(E_{11})| &= 1056 \cdot |X(E_{10})| = 2^2 \cdot |Sp_{10}(2)|; \\ |X(E_{12})| &= 2080 \cdot |X(E_{11})| = 2 \cdot |O_{12}^-(2)|; \\ |X(E_{13})| &= 4096 \cdot |X(E_{12})| = 2^{13} \cdot |O_{12}^-(2)|; \\ |X(E_{14})| &= 8127 \cdot |X(E_{13})| = 2 \cdot |O_{14}^-(2)|; \\ |X(E_{15})| &= 16256 \cdot |X(E_{14})| = 2^2 \cdot |Sp_{14}(2)|; \\ |X(E_{16})| &= 32640 \cdot |X(E_{15})| = 2 \cdot |O_{16}^+(2)|; \end{split}
```

```
\begin{split} |X(E_{17})| &= 65536 \cdot |X(E_{16})| = 2^{17} \cdot |O_{16}^{+}(2)|; \\ |X(E_{18})| &= 131327 \cdot |X(E_{17})| = 2 \cdot |O_{18}^{+}(2)|; \\ |X(E_{19})| &= 262656 \cdot |X(E_{18})| = 2^{2} \cdot |Sp_{18}(2)|; \\ |X(E_{20})| &= 524800 \cdot |X(E_{19})| = 2 \cdot |O_{20}^{-}(2)|. \end{split}
```

В силу леммы 1 порядок группы X_n делится на порядок группы W_n (ее тип определяется по предложению 1). Поэтому если предположение $X_n < X_{n+1}$ нарушается при некотором n=m, для всех $n \ge m$ порядки X_n будут точно в два раза меньше порядков, приведенных в предложении 4. Отметим, что равенства $|X_{4k+3}| = |Sp_{4k+2}|$ невозможны, поскольку иначе $|X_{4k+4}| = \frac{1}{2}|O_{4k+4}^-(2)|$ — при четном k и $|X_{4k+4}| = \frac{1}{2}|O_{4k+4}^+(2)|$ — при нечетном k, что противоречит лемме 1. Итак, порядки интересующих нас групп либо перечислены в предложении 4, либо в два раза меньше порядков, в нем приведенных. Та же ситуация возникает для групп $X(J_n)$ и $X(K_n)$. Для групп $X(I_n)$, рассмотренных в работе первого автора 2019 г., отмеченной выше, такой дихотомии не возникало.

Результаты проведенных расчетов на компьютере сформулируем в следующем виде.

Предложение 5. Пусть $X_n \in \{X(E_n), X(J_n)\}$. Тогда $|X_n| \in \{2|W_n|, 4|W_n|\}$ при $W_n \simeq Sp_{n-1}(2)$ и $|X_n| \in \{|W_n|, 2|W_n|\}$ при $W_n \simeq O_n^{\pm}(2)$. Если $X_n = X(K_n)$ при n = 2l + 1, то $W_n \simeq Sp_{2l}(2)$ и $|X_n| \in \{|W_n|, 2|W_n|\}$.

Заметим, что во всех случаях $|X_{20}| > 2 \cdot 10^{57}$, а порядок спорадической группы F_1 ("монстра" или "дружественного гиганта") примерно равен $8 \cdot 10^{53}$ [15, с. 6].

2. Доказательство теоремы

Обозначим через H_n коммутант группы G_n . Как следует из [14, с. 180], $[G_n:H_n]=2$ и $G_n=H_n \leftthreetimes \langle s_1 \rangle$. В леммах 2–5, предусматривая возможность других заданий групп X_n , будем предполагать, что $X_n=\langle s_1,\ldots,s_n\mid R_n\cup T_n \rangle$, где $\langle s_1,\ldots,s_n\mid R_n \rangle=G_n$, $T_n\subseteq H_n$, и для всех слов $w(s_1,\ldots,s_m)\in T_n$ их значения $w(w_1,\ldots,w_m)$ в группах W_n равны 1 (по лемме 1).

Лемма 2. Коммутант Y_n группы X_n порожден элементами $x_i x_j$, где $(i,j) \in E(\Gamma_n)$, состоит из всех элементов группы X_n четной длины в алфавите $\{x_1, \ldots, x_n\}$, $[X_n : Y_n] = 2$ и $X_n = Y_n \leftthreetimes \langle x_1 \rangle$. Ограничение гомоморфизма $\varphi_1 \colon G_n \to X_n$ на H_n совпадает с сюрьективным гомоморфизмом $\varphi \colon H_n \to Y_n$.

Д о к а з а т е л ь с т в о. Повторим рассуждения из [14, с. 180] для групп Y_n . При $(i,j) \in E(\Gamma_n)$ имеем $(x_ix_j)^3=1$ и $x_ix_j=x_jx_ix_jx_i=[x_j,x_i]\in Y_n$. Граф Γ_n связен, и для любых его различных вершин i,k существует соединяющий их путь $i=i_1,i_2,\ldots,i_m=k$. Отсюда $x_ix_k=x_ix_{i_2}\cdot x_{i_2}x_{i_3}\cdot\ldots\cdot x_{i_{m-1}}x_{i_m}$, поэтому $x_ix_k\in Y_n$ и Y_n содержит все элементы четной длины из X_n . Определяющие соотношения группы Кокстера G_n и дополнительные соотношения из T_n как элементы подгруппы H_n имеют четную длину в алфавите S_n . Поэтому каждый элемент группы X_n либо четен, либо нечетен, и элементы четной длины составляют в X_n подгруппу Y_n индекса 2 и, очевидно, $X_n=Y_n \leftthreetimes \langle x_1 \rangle$. Наконец, сюрьективность гомоморфизма $\varphi:H_n\to Y_n$ следует из включения $\ker \varphi_1 \le H_n$.

Лемма доказана.

З а м е ч а н и е 3. По теореме Фишера класс 3-транспозиций D группы $Sp_{2l}(2)$ совпадает с множеством ее симплектических трансвекций [2, теорема 2.58]. В прямом произведении $G=Sp_{2l}(2)\times\mathbb{Z}_2$, где $\mathbb{Z}_2=\langle z\rangle$ — группа порядка 2, множество Dz является классом сопряженных 3-транспозиций, поскольку $|az\cdot bz|=|ab|$ для любых $a,b\in D$. Далее, группа $Sp_{2l}(2)$ проста (предложение 2), и ввиду леммы 2 $a_1\cdot\ldots\cdot a_{2k+1}=1$ для некоторых $a_1,\ldots,a_{2k+1}\in D$ и $a_1z\cdot\ldots\cdot a_{2k+1}z=z$. Следовательно, $G=\langle Dz\rangle=Sp_{2l}(2)\times\mathbb{Z}_2$ — группа, порожденная классом сопряженных 3-транспозиций.

Лемма 3. Если $n=2l+1\geq 9,\ W_n\simeq Sp_{2l}(2)\ u\ |X_n|=2|Sp_{2l}(2)|,\ mo\ X_n\simeq Sp_{2l}(2)\times \mathbb{Z}_2.$ Если $n=2l\geq 6\ u\ |X_n|=|O_{2l}^\pm(2)|,\ mo\ X_n\simeq O_{2l}^\pm(2).$

Доказательство. По лемме 1 существует сюрьективный гомоморфизм

$$\varphi_2 \colon X_{2l+1} \to Sp_{2l}(2),$$

и ввиду предложения 3 $\operatorname{Ker} \varphi_2 = Z(X_n)$. С другой стороны, по лемме 2 $[X_n:Y_n]=2$, что ввиду предложения 3 влечет изоморфизмы $Y_n \simeq Sp_{2l}(2)$ и $X_n = Y_n \times \mathbb{Z}_2 \simeq Sp_{2l}(2) \times \mathbb{Z}_2$. Второе утверждение очевидно.

Лемма доказана.

Лемма 4. Если
$$n = 2l + 1 \ge 9$$
 и $W_n \simeq Sp_{2l}(2)$, то $|X_n| = 2|Sp_{2l}(2)|$.

Д о к а з а т е л ь с т в о. Предположим, что $|X_n| \neq 2|Sp_{2l}(2)|$. Тогда по предложению 5 $|X_n| = 4|Sp_{2l}(2)|$. Пусть $\varphi_2 \colon X_n \to Sp_{2l}(2)$ — сюрьективный гомоморфизм из леммы 1. Так как группа $Sp_{2l}(2)$ проста (предложение 3) и $[X_n \colon Y_n] = 2$ (лемма 2), то $\varphi_2(Y_n) = \varphi_2(X_n)$. Обозначим через Z ядро индуцированного φ_2 гомоморфизма $Y_n \to Sp_{2l}(2)$. Тогда |Z| = 2 и, следовательно, $Z = Z(Y_n)$. По лемме 2 $Y_n' = Y_n$, значит, Y_n — нерасщепляемое расширение группы порядка 2 при помощи группы $Sp_{2l}(2)$. Поэтому ввиду [2, c. 53] 2 делит порядок мультипликатора Шура группы $Sp_{2l}(2)$. Однако мультипликатор Шура группы $Sp_{2l}(2)$ при l > 3 тривиален [2, табл. 4.1; 17]. Полученное противоречие доказывает лемму.

Лемма 5. Если
$$n=2l\geq 10$$
 и $W_n\simeq O_{2l}^{\pm}(2)$, то $X_n\simeq O_{2l}^{\pm}(2)$ и $Y_n\simeq \Omega_{2l}^{\pm}(2)$.

Д о к а з а т е л ь с т в о. В силу предложения 5 либо $|X_n| = |O_{2l}^{\pm}(2)|$, либо $|X_n| = 2|O_{2l}^{\pm}(2)|$. Допустим, что $|X_n| = 2|O_{2l}^{\pm}(2)|$. Пусть $\varphi_2 \colon X_n \to O_{2l}^{\pm}(2)$ — сюрьективный гомоморфизм из леммы 1. В силу леммы 2 $Y_n = X_n'$ и $[X_n \colon Y_n] = 2$. Поэтому ввиду предложения 2 $\varphi_2(Y_n) = W_n' \simeq \Omega_{2l}^{\pm}(2)$ и, следовательно, Y_n — нерасщепляемое расширение группы порядка 2 при помощи группы $O_{2l}^{\pm}(2)$. Поэтому ввиду [2, c. 53] 2 делит порядок мультипликатора Шура группы $O_{2l}^{\pm}(2)$. Однако мультипликатор Шура группы $O_{2l}^{\pm}(2)$ при l > 4 тривиален [2, табл. 4.1; 17]. Полученное противоречие доказывает лемму.

Д о к а з а т е л ь с т в о теоремы. Заметим, что в силу лемм 4, 5 все группы X_n , определенные в соотношениях (2)–(6), удовлетворяют условиям леммы 3. Для групп $X_n = X(K_n)$ теорема следует из предложений 1, 5 и леммы 3, а для групп $X_n = X(I_n)$ утверждение теоремы доказано в работе первого автора 2019 г., отмеченной выше.

Для групп X_n с графами $\Gamma_n = E_n$ теорема следует из лемм 3, 5 и предложения 1 о разметке графов E_n . Согласно лемме 3 и разметке (предложение 1)

$$X_{4k+3} \simeq Sp_{4k+2}(2) \times \mathbb{Z}_2, \quad Y_{4k+3} \simeq Sp_{4k+2}(2) \quad \text{if} \quad X_{4k+\delta} \simeq O_{4k+\delta}^{\pm}(2), \quad Y_{4k+\delta} \simeq \Omega_{4k+\delta}^{\pm}(2),$$

где $\delta = 0, 2$. Знак \pm определяется по разметке графов E_n .

Аналогично, группы $X_n = X(J_n)$ удовлетворяют условиям леммы 3, по которой $Y_n \simeq Sp_{2l}(2)$ и $X_n \simeq Sp_{2l}(2) \times \mathbb{Z}_2$ при $W_n \simeq Sp_{2l}(2)$ и $X_n \simeq O_{2l}^\pm(2)$ и $Y_n \simeq \Omega_{2l}^\pm(2)$ при n=2l. Согласно разметке графа J_n имеем $X_{4k+1} \simeq Sp_{4k}(2) \times Z_2$ и $X_n \simeq O_{2l}^\pm(2)$ для n=2l. Знак \pm , как и выше, определяется по разметке графов J_n .

Теорема доказана.

Подведем итоги. Для групп $W_n \in \{Sp_{2l}(2), O_{2l}^{\pm}(2)\}$ указаны системы $\{w_1, \dots, w_n\}$ порождающих их симплектических трансвекций (3-транспозиций), порядки попарных произведений которых заданы графами-деревьями Кокстера Γ_n :

$$w_i^2 = 1, (w_i w_j)^2 = 1, (w_i w_j)^3 = 1, \text{ где } 1 \le i, j, k \le n, (k, j) \notin E(\Gamma_n), (i, j) \in E(\Gamma_n).$$
 (10)

Каждый граф Γ_n однозначно определяет группу Кокстера G_n :

$$G_n = \langle s_1, \ldots, s_n | s_i^2 = (s_k s_j)^2 = (s_i s_j)^3 = 1$$
, где $1 \le i, j, k \le n$, $(k, j) \notin E(\Gamma_n)$, $(i, j) \in E(\Gamma_n) \rangle$. (11)

По теореме Дика группа W_n изоморфна фактор-группе группы G_n (в этом нет ничего особенного, поскольку каждая порожденная инволюциями группа изоморфна фактор-группу подходящей группы Кокстера). Особенность заключается в "близком генетическом родстве" групп W_n и G_n , несмотря на рост рангов: генетические коды групп $O_{2l}^{\pm}(2)$ } (n=2l) и групп $Sp_{2l}(2) imes \mathbb{Z}_2 \ (n=2l+1)$ состоят из кодов групп G_n и точно одного $\overline{\partial}$ ополнительного генасоотношения w^2 . При этом w есть произведение двух инволюций, одна из которых — s_{m+1} $(6 \le m \le 8)$ — принадлежит порождающему множеству, а вторая является симметрией w_r , определенной максимальным положительным корнем корневой системы типа E_m с конечной группой Вейля $G_m = W(E_m)$. Сериям графов E_n , I_n , J_n соответствуют цепи $G_m < G_{m+1} < G_m$ $\ldots < G_n < \ldots$ вложенных друг в друга групп Кокстера. В работе для $n \leq 20$ подтверждена гипотеза о превращении такой цепи в цепь $W_m < W_{m+1} < \ldots < W_n < \ldots$ конечных групп W_n с 3-транспозициями всего одним дополнительным словом-соотношением w^2 , принадлежащим группе G_{m+1} . Расположение в цепи интересующих нас групп тройками, разделенными группами с "большими" нормальными 2-подгруппами, и существование тройки спорадических простых групп M(22), M(23) и M(24)' (п. (vi) теоремы Фишера), также интригуют. Возникает вопрос, не является ли такая деталь проявлением некой общей закономерности?

Наконец, полученные результаты позволяют выдвинуть следующую гипотезу о более тесной связи групп $W_n \in \{Sp_{2l}(2), O_{2l}^{\pm}(2)\}$ с группами Кокстера G_n .

 Γ и п о т е з а. Группа W_n — это единственная конечная фактор-группа группы G_n , обладающая тривиальным центром и простым неабелевым коммутантом.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Fischer B.** Finite groups generated by 3-transpositions // WMI Preprints. Coventry (UK): University of Warwick, 1969.
- 2. Горенстейн Д. Конечные простые группы. М.: Мир, 1985. 352 р.
- 3. Hall J.I. Graphs, geometry, 3-transposition, and symplectic F_2 -transvection groups // Proc. London Math. Soc. 1989. Vol. 58. P. 89–111.
- 4. **Созутов А.И.** О группах типа Σ_4 , порожденных 3-транспозициями // Сиб. мат. журн. 1992. Т. 33, № 1. С. 140–149.
- 5. McLaughlin J. Some subgroups of $SL_n(F_2)$ // Ill. J. Math. 1969. Vol. 13, no. 1. P. 108–115.
- 6. Aschbacher M. 3-transposition groups. Cambridge: Cambridge University Press, 1997. 260 p.
- 7. **Matsuo A.** 3-transposition groups of symplectic type and vertex operator algebras // J. Math. Soc. Japan. 2005. Vol 57, N = 3. P. 639–649.
- 8. **Созутов А.И., Кузнецов А.А., Синицин В.М.** О системах порождающих некоторых групп с 3-транспозициями // Сиб. мат. электрон. изв. 2013. Т. 10. С. 285–301. doi: 10.17377/semi.2013.10.022.
- 9. **Созутов А.И.** Об алгебрах Ли с мономиальным базисом // Сиб. мат. журн. 1993. Т. 34, № 5. С. 188–201.
- 10. **Hall J.I., Shpectorov S.** The spectra of finite 3-transpositions groups [e-resource]. 2018. 35 p. URL: arXiv:1809.03696.
- 11. **Griess R.L. Jr.** A vertex operator algebra related to E_8 with avtomorphism group $O^+(10,2)$ // Ohio State Univ. Math. Res. Inst. Vol. 7. Berlin: Publ. de Gruyter, 1998. P. 43–58.
- 12. Cuypers H., Horn M., J. in 't panhuis, Shpectorov S. Lie algebras and 3-transpositions // J. Algebra. 2012. Vol. 368. P. 21–39. doi: 10.1016/j.jalgebra.2012.06.010.
- 13. **Бурбаки Н.** Группы и алгебры Ли. Группы, порожденные отражениями. Гл. IV–VI. М.: Мир, 1972. 334 с.
- 14. **Коксетер Г.С.М., Мозер У.О.Дж.** Порождающие элементы и определяющие элементы дискретных групп. М.: Наука, 1980. 240 с.
- 15. Кондратьев А.С. Группы и алгебры Ли. Екатеринбург: Изд-во УрО РАН, 2009. 310 с.

- 16. О'Мира О. Лекции о симплектических группах. М.: Мир, 1979. 167 с.
- 17. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. An atlas of finite groups. Oxford: Clarendon Press, 1985. 252 p.

Поступила 19.05.2020 После доработки 4.11.2020 Принята к публикации 16.11.2020

Созутов Анатолий Ильич д-р физ.-мат. наук, профессор Сибирский федеральный университет г. Красноярск e-mail: sozutov ai@mail.ru

Синицин Владимир Михайлович Сибирский федеральный университет г. Красноярск e-mail: sinkoro@yandex.ru

REFERENCES

- 1. Fischer B. Finite groups generated by 3-transpositions. WMI Preprints, Coventry (UK): University of Warwick, 1969.
- 2. Gorenstein D. Finite simple groups. An introduction to their classification. University Series in Mathematics, N Y: Plenum Publishing Corp., 1982, 333 p. ISBN: 0-306-40779-5. Translated to Russian under the title Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu. Moscow: Mir Publ., 1985, 352 p.
- 3. Hall J.I. Graphs, geometry, 3-transposition, and symplectic F_2 -transvection groups. *Proc. London Math. Soc.*, 1989, vol. 58, no. 1, pp. 89–111. doi: 10.1112/plms/s3-58.1.89.
- 4. Sozutov A.I. Groups of type Σ_4 generated by 3-transpositions. Siberian Math. J., 1992, vol. 33, no. 1, pp. 117–124. doi: 10.1007/BF00972943.
- 5. McLaughlin J. Some subgroups of $SL_n(F_2)$. Ill. J. Math., 1969, vol. 13, no. 1, pp. 108–115. doi: 10.1215/ijm/1256053741.
- 6. Aschbacher M. 3-transposition groups. Cambridge: Cambridge University Press, 1997, 260 p. ISBN: 0-521-57196-0 .
- 7. Matsuo A. 3-transposition groups of symplectic type and vertex operator algebras. J. Math. Soc. Japan, 2005, vol. 57, no. 3, pp. 639–649. doi: $10.2969/\mathrm{jmsj}/1158241926$.
- 8. Sozutov A.I., Kuznetsov A.A., Sinitsin V.M. Systems of generators of some groups with 3-transpositions. Sib. Elektron. Mat. Izv., 2013, vol. 10, pp. 285–301 (in Russian). doi: 10.17377/semi.2013.10.022.
- 9. Sozutov A.I. On Lie algebras with monomial basis. Siberian Math. J., 1993, vol. 34, no. 5, pp. 959–971. doi: 10.1007/BF00971409.
- 10. Hall J.I., Shpectorov S. The spectra of finite 3-transpositions groups [e-resource]. 2018. 35 p. Available at: arXiv:1809.03696.
- 11. Griess R.L., Jr. A vertex operator algebra related to E_8 with avtomorphism group $O^+(10,2)$. In: The Monster and Lie algebras. Ohio State Univ. Math. Res. Inst., vol. 7. Berlin: Publ. de Gruyter, 1998, pp. 43–58. ISBN: 9783110161847.
- 12. Cuypers H., Horn M., in 't panhuis, Shpectorov S. *Lie algebras and 3-transpositions J. Algebra*, 2012, vol. 368, pp. 21–39. doi: 10.1016/j.jalgebra.2012.06.010.
- 13. Bourbaki N. Groupes et algebres de Lie (Chapt. IV–VI). Paris: Hermann, 1968, 282 p. doi: 10.1007/978-3-540-34491-9. Translated to Russian under the title Gruppy i algebry Li (glavy IV–VI), Moscow: Mir Publ., 1972, 334 p.
- 14. Coxeter H.S.M., Moser W.O.J Generators and Relations for Discrete Groups. Berlin; Heidelberg: Springer-Verlag, 1972, 164 p. doi: 10.1007/978-3-662-21946-1. Translated to Russian under the title Porozhdayushchie elementy i opredelyayushchie elementy diskretnykh grupp, Moscow: Nauka Publ., 1980, 240 p.

- 15. Kondrat'ev A.S. *Gruppy i algebry Li* [Groups and Lie algebras]. Ekaterinburg: UrO RAN Publ., 2009, 310 p. ISBN: 978-5-7691-2111-1.
- 16. O'Meara O.T. Symplectic groups. Providence, R.I.: Amer. Math. Soc., 1978, 125 p. ISBN: 0-8218-1516-4. Translated to Russian under the title Lektsii o simplekticheskikh gruppakh, Moscow: Mir Publ., 1979, 167 p.
- 17. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. Atlas of finite groups. Oxford: Clarendon Press, 1985, 252 p. ISBN: 0198531990 .

Received May 19, 2020 Revised November 4, 2020 Accepted November 16, 2020

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 19-01-00566 A.)

Sozutov Anatoly Ilich, Dr. Phys.-Math. Sci., Prof., Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: sozutov ai@mail.ru.

 $Vladimir\ Mihaylovich\ Sinitsin,$ Siberian Federal University, Krasnoyarsk, 660041 Russia, e-mail: sinkoro@yandex.ru .

Cite this article as: V. M. Sinitsin, A. I. Sozutov. On the connection of some groups generated by 3-transpositions with Coxeter groups, *Trudy Instituta Matematiki i Mekhaniki UrO RAN*, 2020, vol. 26, no. 4, pp. 234–243.