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ON A REFINEMENT OF MARCINKIEWICZ–ZYGMUND TYPE INEQUALITIES
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The main goal of this paper is to verify a refined Marcinkiewicz–Zygmund type inequality with a quadratic

error term
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2

nm−1
∑

j=0

(xj+1 − xj−1)w(xj)|tn(xj)|
q = (1 + O(m−2))

π
∫

−π

w(x)|tn(x)|
q dx, 2 ≤ q < ∞,

where tn is any trigonometric polynomial of degree at most n, −π = x0 < x1 < · · · < xmn = π,

max
0≤j≤mn−1

(xj+1−xj) = O
( 1

nm

)

, m, n ∈ N, and w is a Jacobi type weight. Moreover, the quadratic error term

O(m−2) is shown to be sharp, in general. In addition, similar results are given for q = ∞ and in the multivariate

case.

Keywords: multivariate polynomials, Marcinkiewicz–Zygmund, Bernstein, and Schur type inequalities, dis-

cretization of Lp norm, doubling and Jacobi type weights.

А. Кроо. Об уточнении неравенств типа Марцинкевича — Зигмунда.

В статье доказано уточненное неравенство типа Марцинкевича — Зигмунда c квадратичным остаточ-

ным членом

1

2

nm−1
∑

j=0

(xj+1 − xj−1)w(xj)|tn(xj)|
q = (1 + O(m−2))

π
∫

−π

w(x)|tn(x)|
q dx, 2 ≤ q < ∞,

где tn — произвольный тригонометрический полином степени не больше n, −π = x0 < x1 < · · · < xmn = π,

max
0≤j≤mn−1

(xj+1 − xj) = O
( 1

nm

)

, m,n ∈ N и w — вес типа Якоби. Также показано, что квадратичный

остаточный член O(m−2) в общем случае является точным. Аналогичные результаты получены при q = ∞
и в случае многих переменных.
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1. Introduction

The starting point for the present paper is the classical Marcinkiewicz—Zygmund result [11]
stating that for any univariate trigonometric polynomial tn of degree at most n and every 1 ≤ q < ∞
we have

∫

|tn|q ∼
1

n

2n
∑

s=0

∣

∣

∣
tn

( 2πs

2n+ 1

)∣

∣

∣

q
, (1)

where the constants depend only on q. This equivalence relation is an effective tool used for the
discretization of the Lq norms of trigonometric polynomials, which is widely applied in the study of
the convergence of Fourier series, Lagrange and Hermite interpolation, positive quadrature formulas,
and scattered data interpolation; see for instance [10] for a survey on the univariate Marcinkiewicz—
Zygmund type inequalities. An important generalization of (1) for the so-called doubling weights
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was given by Mastroianni and Totik [12]. Recall that a nonnegative integrable weight w on [−π, π]
is called doubling if with certain L > 0 depending only on the weight

∫

2I

w ≤ L

∫

I

w, I ⊂ [−π, π]

for any interval I and 2I being its double with the same midpoint. In particular, all generalized
Jacobi type weights satisfy the doubling property. Then as shown in [12] there exists an integer

mw ∈ N (depending only on the weight) such that whenever m ≥ mw we have with xj :=
πj

mn
,

0 ≤ j ≤ 2mn

Bm

∑

0≤j≤2mn−1

cj |tn(xj)|q ≤
1

∫

−1

|tn|qw ≤ Am

∑

0≤j≤2mn−1

cj |tn(xj)|q ∀ tn ∈ Tn, (2)

where Tn stands for the set of real trigonometric polynomials of degree at most n, cj :=
∫ xj+1/n

xj−1/n
w(t) dt, 0 ≤ j ≤ mn, and Am, Bm > 0 depend only on m and w.

Subsequently, in [4] similar Marcinkiewicz—Zygmund type inequalities were given for various
multivariate domains, in particular polytopes, cones, spherical sectors, tori, etc.

A crucial feature of estimates (2) consists in the fact that the constants Am, Bm are independent
of the degree n of the trigonometric polynomials. On the other hand, it is natural to expect that the
optimal constants must satisfy the relations Am, Bm → 1 as m → ∞. Indeed, a careful examination

of the proofs given in [4] reveals that estimates similar to (2) hold with Am, Bm = 1+O
( 1

m

)

. This

leads to the question of the sharp rate of convergence Am, Bm → 1 as m → ∞. The main goal of
the present paper is to verify that when q ≥ 2 Marcinkiewicz—Zygmund type inequalities analogous
to (2) hold with

Am, Bm = 1 +O
( 1

m2

)

. (3)

This quadratic error term for the constants Am, Bm will be verified for both algebraic and trigono-
metric polynomials of one and several variables. Moreover, we will also show that in general the

error term O
( 1

m2

)

is the best possible. The problem of finding the correct asymptotics of Am, Bm

is similar to the so-called “Marcinkiewicz problem with ǫ” raised in [3, p. 5], which corresponds to
the situation when Am, Bm = 1 + ǫ.

The analogue of Marcinkiewicz—Zygmund type inequalities for q = ∞ is the notion of admissible

meshes or norming sets, see [2; 6]. Admissible meshes Yn ⊂ K, n ∈ N, are discrete point sets
satisfying with some c > 0 depending only on K

‖p‖K ≤ c‖p‖Yn ∀ p ∈ P d
n , ∀ n ∈ N, (4)

where P d
n stands for the set of algebraic polynomials in d variables of total degree at most n, and

‖p‖D denotes the usual sup norm on the compact set D ⊂ R
d. If, in addition, card Yn ∼ nd, then

the admissible mesh is called optimal. In [8] it was shown that star-like C2-domains and convex
polytopes in R

d possess optimal meshes, while in [9] the existence of optimal meshes was verified
for every convex domain on the plane.

Recently in [13] it was proved that for a C2 star-like domain K ⊂ Rd there exist optimal meshes

of cardinality (mn)d so that (4) holds with c = 1+O
( 1

m2

)

, m ∈ N. This exhibits a quadratic error

term when q = ∞. However, the question of sharpness of this quadratic error term when q = ∞
was not addressed in [13]. We will fill in this gap below.

This paper is organized as follows. First we will prove the sharpness of c = 1+O
( 1

m2

)

in (4) for

every compact set K ⊂ R
d and each mesh with card Yn ∼ (mn)d (Theorem 1). Then we will verify
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Marcinkiewicz—Zygmund type inequalities (2) with quadratic error terms (3) for both algebraic and
trigonometric polynomials, see Theorems 2, 3 and Corollaries 1, 2. In addition, it will be proved

that, in general, the error term O
( 1

m2

)

is the best possible (Theorem 4 below). Finally, Theorem 5

gives similar estimates on the disc and this allows to proceed to more general multidimensional
domains.

Let B(x, r) stand for the closed ball in R
d of radius r and center x. Furthermore, we denote by

RK and rK the radii of the smallest ball containing K and of the largest ball embedded into K,

respectively. Moreover, ρK :=
rK
RK

is the so called distortion constant of K.

Theorem 1. Consider any compact set K ⊂ R
d with nonempty interior. Then for each subset

Yn ⊂ K of cardinality (mn)d ≥ 2, m, n ∈ N there exists Q ∈ P d
2n such that

‖Q‖K ≥
(

1 +
ρ2K
2m2

)

‖Q‖Yn . (5)

If in addition K is convex or convex and central symmetric then the above estimate holds with ρK

replaced by
1

d
or

1√
d
, respectively.

In the proof of Theorem 1 we will use the following “needle polynomial” type result. Denote by
Tn(x) := cos(n arccos x) the classical Chebyshev polynomial.

Lemma 1. For any 0 < h < 1 consider the even univariate polynomial

qn(x) := Tn

(2x2 − h2 − 1

1− h2

)

∈ P 1
2n.

Then |qn(x)| ≤ 1 for every h ≤ |x| ≤ 1 and

|qn(0)| ≥ 1 + 2n2h2. (6)

P r o o f. Clearly, −1 ≤ 2x2 − h2 − 1

1− h2
≤ 1 for h ≤ |x| ≤ 1 and thus |qn(x)| ≤ 1 on this set.

Moreover, by the well-known representation of Chebyshev polynomials

Tn(x) =
1

2

(

(x+
√

x2 − 1)n + (x−
√

x2 − 1)n
)

it follows that

|qn(0)| = Tn

(1 + h2

1− h2

)

=
1

2

(1 + h2

1− h2
+

2h

1− h2

)n
+

1

2

(1 + h2

1− h2
− 2h

1− h2

)n
=

(1 + h)2n + (1− h)2n

2(1 − h2)n
.

Hence using the binomial formula

|qn(0)| ≥
1 +

(2n
2

)

h2

(1− h2)n
≥

(

1 + n(2n− 1)h2
)

(1 + h2)n ≥
(

1 + n(2n− 1)h2
)

(1 + nh2) ≥ 1 + 2n2h2. �

P r o o f of Theorem 1. Consider any subset Yn ⊂ K of cardinality (mn)d. Denote by

sn := max
x∈K

min
y∈Yn

|x− y|

the fill distance of Yn in K. Then we clearly have K ⊂ (
⋃

y∈Yn
B(y, sn)), and hence denoting by

md the Lebesgue measure of the unit ball in R
d

rdKmd ≤ m(K) ≤ (mn)dsdnmd,
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where m(K) is the Lebesgue measure of K. In addition, at least one of the above inequalities has
to be strict yielding

rK < mnsn. (7)

Furthermore, by the definition of sn there exists x0 ∈ K such that for every y ∈ Yn we have
|x0 − y| ≥ sn.

Now set

Q(x) := qn

( |x− x0|
2RK

)

,

where qn is the needle polynomial of Lemma 1 of degree 2n with

h :=
rK

2mnRK
=

ρK
2mn

.

Note that since qn is an even univariate polynomial of degree 2n it follows that Q ∈ P d
2n. Furthermore,

since K is contained in a ball of radius RK it clearly follows that the diameter of K is at most 2RK .
Thus for every y ∈ Yn we have by (7)

h =
rK

2mnRK
<

sn
2RK

≤ |y − x0|
2RK

≤ 1.

Hence by Lemma 1 we have ‖Q‖Yn ≤ 1. Finally, by (6) we obtain

‖Q‖K ≥ |Q(x0)| = |qn(0)| ≥ 1 + 2n2h2 = 1 +
ρ2K
2m2

≥
(

1 +
ρ2K
2m2

)

‖Q‖Yn .

Now assume that K is convex. First it should be noted that definition (4) of norming sets of K
is invariant under regular affine transformations of the domain. That is if Yn is a norming set of K
then for any regular affine map T : Rd → R

d the set T (Yn) is a norming set of T (K) with the same
norming constant c in (4). Secondly, by the John’s maximal ellipsoidal theorem [7] there exists a
unique ellipsoidal EK of maximal volume and center cK such that EK ⊂ K ⊂ cK + d(EK − cK),
where EK = T (B(0, 1)) with some regular affine map T : Rd → R

d. Moreover, if in addition K is
convex and central symmetric then the same holds true with

√
d instead of d. Thus when K is convex

we may assume without loss of generality that B(0, 1) ⊂ K ⊂ B(0, d), or B(0, 1) ⊂ K ⊂ B(0,
√
d)

in the central symmetric case. Therefore, if K is convex, or convex and central symmetric we can

assume that ρK =
1

d
or ρK =

1√
d
, respectively. Using these relations together with (5) completes

the proof of the theorem. �

2. Refined Marcinkiewicz—Zygmund inequalities for univariate polynomials

Our next result refines the classical Marcinkiewicz—Zygmund inequality. It provides constants

of order 1+O
( 1

m2

)

in (1) when discretization is accomplished with mn nodes. A basic tool needed

below is the Lq Bernstein inequality for trigonometric polynomials, see [5, p. 102], or [1]. It states
that for every tn ∈ Tn

‖t′n‖Lq ≤ n‖tn‖Lq .

Theorem 2. For any n, N ∈ N, q ≥ 2, −π = x0 < x1 < · · · < xN = π and tn ∈ Tn we have

∣

∣

∣

∣

π
∫

−π

|tn(x)|q dx− 1

2

N−1
∑

j=0

(xj+1 − xj−1)|tn(xj)|q
∣

∣

∣

∣

≤ (qnhN )2

2

π
∫

−π

|tn(x)|q dx, (8)

where hN := max0≤j≤N−1(xj+1 − xj), x−1 := xN−1 − 2π.
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P r o o f. We will use the following elementary trapezoidal integration rule which can be easily
verified by repeated integration by parts for any function f whose first derivative is absolutely
continuous

b
∫

a

f(x) dx = (b− a)
f(a) + f(b)

2
+

1

2

b
∫

a

f ′′(x)(a − x)(b− x) dx. (9)

We have by (9) setting fn(x) := |tn(x)|q
π
∫

−π

|tn(x)|q dx =

N−1
∑

j=0

xj+1
∫

xj

|tn(x)|q dx =

N−1
∑

j=0

( (xj+1 − xj)(|tn(xj)|q + |tn(xj+1)|q)
2

+Rj

)

,

where

Rj :=
1

2

xj+1
∫

xj

f ′′
n(x)(xj − x)(xj+1 − x) dx, |Rj | ≤

h2N
2

xj+1
∫

xj

|f ′′
n(x)| dx.

It is easy to see that

1

2

N−1
∑

j=0

(xj+1 − xj)
(

|tn(xj)|q + |tn(xj+1)|q
)

=
1

2

N−1
∑

j=0

(xj+1 − xj)|tn(xj)|q +
1

2

N
∑

j=1

(xj − xj−1)|tn(xj)|q

=
1

2

N−1
∑

j=0

(xj+1 − xj−1)|tn(xj)|q.

Thus, combining the above relations, we get

R :=

π
∫

−π

|tn(x)|q dx− 1

2

N−1
∑

j=0

(xj+1 − xj−1)|tn(xj)|q =
N−1
∑

j=0

Rj, |R| ≤ h2N
2

π
∫

−π

|f ′′
n(x)| dx. (10)

Since obviously
|f ′′

n(x)| ≤ q(q − 1)|tn(x)|q−2(t′n)
2 + q|tn(x)|q−1|t′′n|,

it follows that

|R| ≤ h2Nq(q − 1)

2

π
∫

−π

|tn(x)|q−2(t
′

n)
2 dx+

h2Nq

2

π
∫

−π

|tn(x)|q−1|t′′n| dx. (11)

Using the Hölder inequality and the Lq-Bernstein inequality for trigonometric polynomials we obtain
for the first integral in (11)

π
∫

−π

|tn(x)|q−2(t′n)
2 dx ≤ ‖tn‖q−2

Lq
‖t′n‖2Lq

≤ n2‖tn‖qLq
.

Likewise, for the second integral we have

π
∫

−π

|tn(x)|q−1|t′′n| dx ≤ ‖tn‖q−1
Lq

‖t′′n‖Lq ≤ n2‖tn‖qLq
.

Substituting the last two estimates in (11) we finally obtain |R| ≤ h2Nq2n2

2
‖tn‖qLq

, which is the

needed upper bound. �

Theorem 2 easily yields the next Marcinkiewicz—Zygmund type result for trigonometric polyno-

mials which provides a remainder term of quadratic accuracy. We set xj :=
πj

mn
, −mn ≤ j ≤ mn,

to be the 2mn equidistant points on the period. Then hm =
π

mn
in (8) yielding the next corollary.
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Corollary 1. For any 2 ≤ q < ∞, m ≥ 3q, n ∈ N, and every tn ∈ Tn we have with some

|c| ≤ π2

2

π

mn

mn−1
∑

j=−mn

∣

∣

∣
tn

( πj

mn

)∣

∣

∣

q
=

(

1 +
cq2

m2

)

π
∫

−π

|tn(x)|q dx.

Now we proceed to verifying weighted versions of Theorem 2. In order to prove weighted
Marcinkiewicz—Zygmund type inequalities we need to recall certain Lq Bernstein and Schur type
inequalities with doubling weights which can be found in [12]. It is shown in [12] that given any
doubling weight w and 1 ≤ q < ∞ there is a constant c > 0 depending only on the weight such that
for every trigonometric polynomial of degree at most n

π
∫

−π

|t′n(x)|qw dx ≤ cnq

π
∫

−π

|tn(x)|qw dx. (12)

Consider now a periodic Jacobi type weight

w(x) := w0(x)
∏

1≤k≤s

|x− yk|ak , x, yk ∈ [−π, π],

ak ≥ 1, 1 ≤ k ≤ s, s ∈ N, w0 ∈ C2[−π, π], w0 > 0. (13)

The defect of this weight denoted by dw is defined as dw := maxk ak. The following Schur type
inequality is given in [12] : for any doubling weight w∗, 1 ≤ q < ∞, and every trigonometric
polynomial of degree at most n

π
∫

−π

|tn(x)|qw∗ dx ≤ cndw

π
∫

−π

|tn(x)|qww∗ dx, (14)

where the constant c > 0 depends only on the weights.

Theorem 3. Let w be a Jacobi type weight (13). Then for any n, N ∈ N, q ≥ 2, −π = x0 <
x1 < · · · < xN = π, and tn ∈ Tn we have

1

2

N−1
∑

j=0

(xj+1 − xj−1)w(xj)|tn(xj)|q =
(

1 +O(q2n2h2N )
)

π
∫

−π

w(x)|tn(x)|q dx, (15)

where hN := max
0≤j≤N−1

(xj+1 − xj) and the constant in the O(. . .) term depends only on the weight.

In particular, if N = nm, m ∈ N, and hN = O
( 1

nm

)

then we get

1

2

N−1
∑

j=0

(xj+1 − xj−1)w(xj)|tn(xj)|q =
(

1 +O(m−2)
)

π
∫

−π

w(x)|tn(x)|q dx.

P r o o f. Evidently we can apply estimate (10) with |tn|q replaced by w(x)|tn(x)|q, and in
particular, fn(x) := w(x)|tn(x)|q. Then in turn (11) can be replaced by the estimate

|R| ≤ q2h2N

π
∫

−π

(

w(t′n)
2|tn|q−2 + w|tn|q−1|t′′n|+ |tn|q−1|t′nw′|+ |tn|q|w′′|

)

dx. (16)
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Now we will estimate the four terms on the right hand side of (16) by repeated application of
the Hölder inequality and weighted Lq Bernstein and Schur type inequalities.

Define

‖tn‖qLq(w) :=

π
∫

−π

w(x)|tn(x)|q dx.

1st term. For the first term we use the Hölder inequality and Lq Bernstein inequality (12) with
the doubling weight w. Then we have

π
∫

−π

w(t′n)
2|tn|q−2 dx =

π
∫

−π

(

w(q−2)/q |tn|q−2
)

w2/q(t′n)
2 dx ≤ ‖tn‖q−2

Lq(w)‖t
′
n‖2Lq(w) ≤ cn2‖tn‖qLq(w).

2nd term. Again the Hölder inequality and (12) yield

π
∫

−π

w|tn|q−1|t′′n| dx =

π
∫

−π

w(q−1)/q |tn|q−1w1/q|t′′n| dx ≤ ‖tn‖q−1
Lq(w)‖t

′′
n‖Lq(w) ≤ cn2‖tn‖qLq(w).

3rd term. This case is somewhat trickier. First we use the Hölder inequality to deduct

π
∫

−π

|tn|q−1|t′nw′| dx ≤
(

π
∫

−π

|tn|q|w′| dx
)(q−1)/q(

π
∫

−π

|t′n|q|w′| dx
)1/q

. (17)

Then for both integrals on the right hand of (17) we can use the Schur type inequality (14) with
the doubling weight |w′| and Jacobi type weight

w1(x) :=
∏

1≤k≤s

|x− yk|, dw1
= 1.

It can be easily verified that |w′(x)|w1(x) ≤ cw(x), x ∈ [−π, π], with some c > 0 depending only
on the weight. Thus by (17) and (14)

π
∫

−π

|tn|q−1|t′nw′| dx ≤ c

(

n

π
∫

−π

|tn|q|w′|w1 dx

)(q−1)/q(

n

π
∫

−π

|t′n|q|w′|w1 dx

)1/q

≤ cn

(

π
∫

−π

|tn|qw dx

)(q−1)/q(
π
∫

−π

|t′n|qw dx

)1/q

.

Furthermore, by (12)
(

π
∫

−π

|t′n|qw dx

)1/q

≤ cn‖tn‖Lq(w).

Clearly the last two upper bounds imply the following estimate of the 3rd term:

π
∫

−π

|tn|q−1|t′nw′| dx ≤ cn2‖tn‖q−1
Lq(w)‖tn‖Lq(w) = cn2‖tn‖qLq(w).

4th term. This time we apply Schur type inequality (14) for the doubling weight |w′′| and Jacobi
type weight

w2(x) :=
∏

1≤k≤s

|x− yk|2, dw2
= 2.
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Again it can be verified that |w′′(x)|w2(x) ≤ cw(x), x ∈ [−π, π], with some c > 0 depending only
on the weight. Then by (14)

π
∫

−π

|tn|q|w′′| dx ≤ cn2

π
∫

−π

|tn|q|w′′|w2 dx ≤ cn2

π
∫

−π

w|tn|q dx = cn2‖tn‖qLq(w).

The above estimates verify an upper bound of order n2‖tn‖qLq(w) for each term on the right-hand

side of (16) with a constant depending only on w. Hence summarizing we find from (16) that

|R| ≤ cq2h2Nn2‖tn‖qLq(w).

Evidently, this upper bound immediately implies the required estimate (15). �

Theorem 3 implies a Marcinkiewicz—Zygmund type result for univariate algebraic polynomials
with a remainder term of quadratic accuracy for a Jacobi type weight (13) on [−1, 1]. Indeed, the
next corollary easily follows from the second relation in Theorem 3 by a standard trigonometric
substitution x = cos y.

Corollary 2. Let m, n ∈ N, 2 ≤ q < ∞, and set xj := cos
πj

mn
, 1 ≤ j ≤ mn − 1. Then for

every pn ∈ P 1
n and any Jacobi type weight w on [−1, 1] given as in (13) we have

π

mn

mn−1
∑

j=1

√

1− x2jw(xj)|pn(xj)|q =
(

1 +O(m−2)
)

1
∫

−1

w(x)|pn(x)|q dx.

Relation (8) of Theorem 3 yields an Lq Marcinkiewicz—Zygmund type result

1

2

mn−1
∑

j=0

(xj+1 − xj−1)w(xj)|tn(xj)|q =
(

1 +O(m−2)
)

π
∫

−π

w(x)|tn(x)|q dx ∀ tn ∈ Tn

when max0≤j≤mn−1(xj+1−xj) ∼
1

nm
, 2 ≤ q < ∞. This raises the natural question if the quadratic

accuracy provided by the term O(m−2) in the above relation is the best possible. It turns out that
in general the term O(m−2) cannot be improved further. This is shown by the next theorem in the
model case of L2 norm.

Theorem 4. There exist points −π = x0 < x1 < · · · < xmn = π with

max
0≤j≤mn−1

(xj+1 − xj) =
π

4mn

such that

1

2

mn−1
∑

j=0

(xj+1 − xj−1) cos
2 nxj ≤

(

1− π2

83m2

)

π
∫

−π

cos2 nx dx.

P r o o f. Set h = hmn =
π

8mn
, zj :=

π

4n
−2hj, 0 ≤ j ≤ m−1, and yj :=

π

4n
+hj, 1 ≤ j ≤ 2m.

This provides a total of 3m distinct points on the interval
[

0,
π

2n

]

which are 2h-equidistant on
[

0,
π

4n

]

and h-equidistant on
[ π

4n
,
π

2n

]

. We extend this system of points to [−π, π] by symmetry

about the origin and
π

n
periodicity. This yields a total of 12mn distinct points on [−π, π] which are

denoted by −π = x0 < x1 < · · · < xN = π, N := 12mn− 1.
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Then similarly to (10) we obtain this estimate with fn(x) = cos2 nx, f ′′
n(x) = −2n2 cos 2nx

R :=

π
∫

−π

cos2 nx dx− 1

2

N−1
∑

j=0

(xj+1 − xj−1) cos
2 nxj = n2

N−1
∑

j=0

xj+1
∫

xj

(x− xj)(xj+1 − x) cos 2nx dx.

Hence by the
π

n
periodicity and central symmetry of the point system

R = 4n3
∑

[xj ,xj+1]⊂[0, π
2n

)

xj+1
∫

xj

(x− xj)(xj+1 − x) cos 2nx dx.

Furthermore,

∑

[xj ,xj+1]⊂[0, π
2n

)

xj+1
∫

xj

(x− xj)(xj+1 − x) cos 2nx dx =
∑

0≤j≤m−1

(

zj
∫

zj+1

(x− zj+1)(zj − x) cos 2nx dx

+

y2j+1
∫

y2j

(y − y2j)(y2j+1 − y) cos 2ny dy +

y2j+2
∫

y2j+1

(y − y2j+1)(y2j+2 − y) cos 2ny dy

)

.

Moreover, substituting y =
π

2n
−x in the last two integrals and noting that y2j =

π

2n
− zj, y2j+1 =

π

2n
− zj + h, we see that

zj
∫

zj+1

(x− zj+1)(zj − x) cos 2nx dx+

y2j+1
∫

y2j

(y − y2j)(y2j+1 − y) cos 2ny dy

+

y2j+2
∫

y2j+1

(y − y2j+1)(y2j+2 − y) cos 2ny dy = h

zj
∫

zj+1

(h− |x− zj + h|)+ cos 2nx dx.

Combining the last three relations we obtain

R = 4hn3
∑

0≤j≤m−1

zj
∫

zj+1

(h−|x−zj+h|)+ cos 2nx dx ≥ 4hn3
∑

m/2≤j≤m−1

zj
∫

zj+1

(h−|x−zj+h|)+ cos 2nx dx

≥
√
8hn3

∑

m/2≤j≤m−1

zj
∫

zj+1

(h− |x− zj + h|)+ dx

=
√
8hn3

∑

m/2≤j≤m−1

h2 ≥ h3n3m =
π2

83m2

π
∫

−π

cos2 nx dx.

This estimate immediately implies the required lower bound. �

R e m a r k. Theorems 2 and 3 together with Corollaries 1 and 2 provide an Lq Marcinkiewicz—
Zygmund type result for univariate algebraic and trigonometric polynomials with a remainder term
of quadratic accuracy in the case when 2 ≤ q < ∞. Moreover, by Theorem 4 this quadratic error
term is in general sharp when q = 2. The sharpness in the case q > 2 could be verified similarly.
However, for 1 ≤ q < 2 our method yields only a weaker O(m−1) error term instead of O(m−2).
The question of determining the sharp error term for 1 ≤ q < 2 appears to be an interesting open
problem.
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3. Refined Marcinkiewicz—Zygmund inequalities for multivariate polynomials

Now we extend our considerations to the multivariate case. The main building block in several
variables consists in verifying a Marcinkiewicz—Zygmund type result with a quadratic error term
for the 2-dimensional unit disc B2 ⊂ R

2. Then using the technique developed in [4] one can apply
certain transformations of the domain like rotation or symmetry to obtain a similar result for the
d-dimensional ball and simplex.

Theorem 5. Consider the weight w∗(x, y) := w(r)φ(t), x = r cos t, y = r sin t, where w(r) and

φ(t) are Jacobi type weights (13), w(r) is even on [−1, 1], and φ(t) = φ(t+ π), t ∈ R. Then setting

tj :=
πj

mn
, 0 ≤ j ≤ 2mn, we have for every q ≥ 2 and pn ∈ P 2

n

(1 +O(m−2))

∫

B2

|pn(x, y)|qw∗(x, y) dxdy =
( π

mn

)2
mn−1
∑

k,j=0

aj,k|pn(cos tkeitj )|q,

where ak,j := φ(tj)w(cos tk)| sin 2tk|/2, 0 ≤ k, j ≤ 2mn, and O(m−2) depends only on q and w∗.

P r o o f. Using the polar coordinates x = r cos t, y = r sin t and the relation φ(t) = φ(t + π)
we have

‖pn‖qLq(w∗) =

∫

B2

|pn|qw∗ dxdy

=
1

2

2π
∫

0

φ(t)

1
∫

−1

|pn(r cos t, r sin t)|qw(r)|r| drdt =
1

2

2π
∫

0

φ(t)g(t) dt, pn ∈ P 2
n ,

where

g(t) :=

1
∫

−1

|pn(r cos t, r sin t)|qw(r)|r| dr.

Then similarly to (10) we obtain

R :=

∣

∣

∣

∣

1

2

2π
∫

0

φ(t)g(t) dt − π

2mn

2mn−1
∑

j=0

φ(tj)g(tj)

∣

∣

∣

∣

≤
( π

2mn

)2
2π
∫

0

|(φg)′′| dt

≤
( π

2mn

)2
(

2π
∫

0

|φ′′g| dt + 2

2π
∫

0

|φ′g′| dt+
2π
∫

0

|φg′′| dt
)

. (18)

Similarly to the proof of Theorem 3 the three terms on the right-hand side of (18) can be estimated
using Hölder, Schur, and Bernstein type inequalities together with the Fubini theorem. The Schur
type inequality (14) will be used below with the Jacobi weights

w1(t) :=
∏

1≤k≤s

|t− yk|, dw1
= 1, w2(t) :=

∏

1≤k≤s

|t− yk|2, dw2
= 2,

where φ(t) =
∏

1≤k≤s |t − yk|ak , ak ≥ 1. It can be easily verified that with some c > 0 depending
only on the weight

|φ′(t)|w1(t) ≤ cφ(t), |φ′′(t)|w2(t) ≤ cφ(t), t ∈ [0, 2π]. (19)
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1st term. Then by the Fubini theorem and Lq Schur type inequality (14) applied to the trigo-
nometric polynomial pn(r cos t, r sin t) of the variable t with the doubling weight |φ′′(t)| and w2(t)
we obtain by (19)

2π
∫

0

|φ′′|g dt =
∫

[−1,1]

w(r)|r|
2π
∫

0

|φ′′(t)||pn(r cos t, r sin t)|q dtdr

≤ cn2

∫

[−1,1]

w(r)|r|
2π
∫

0

|φ′′(t)|w2(t)|pn(r cos t, r sin t)|q dtdr

≤ cn2

∫

[−1,1]

w(r)|r|
2π
∫

0

φ(t)|pn(r cos t, r sin t)|q dtdr = cn2

∫

B2

|pn|qw∗ dxdy.

2nd term. First we use the Hölder inequality to obtain for any r ∈ [0, 1] and pn = pn(r cos t, r sin t)

∫

[0,2π]

|pn|q−1
∣

∣

∣

∂pn
∂t

∣

∣

∣
|φ′(t)| dt ≤

(
∫

[0,2π]

∣

∣

∣

∂pn
∂t

∣

∣

∣

q
|φ′(t)| dt

)1/q( ∫

[0,2π]

|pn|q|φ′|(t) dt
)(q−1)/q

.

Since for every r ∈ [−1, 1], pn = pn(r cos t, r sin t) is a univariate trigonometric polynomial of
degree at most n we have by the Lq Bernstein inequality (12) with the doubling weight |φ′(t)|

(
∫

[0,2π]

∣

∣

∣

∂pn
∂t

∣

∣

∣

q
|φ′(t)| dt

)1/q

≤ cn

(
∫

[0,2π]

|pn|q|φ′(t)| dt
)1/q

∀ r ∈ [−1, 1].

Combining the last two estimates yields
∫

[0,2π]

|pn|q−1
∣

∣

∣

∂pn
∂t

∣

∣

∣
|φ′(t)| dt ≤ cn

∫

[0,2π]

|pn|q|φ′(t)| dt ∀ r ∈ [−1, 1].

Hence using the above estimate and the Fubini theorem, we get
∫

[0,2π]

|g′(t)φ′(t)| dt ≤ q

∫

[−1,1]

w(r)|r|
∫

[0,2π]

|pn|q−1
∣

∣

∣

∂pn
∂t

∣

∣

∣
|φ′(t)| dtdr

≤ cqn

∫

[−1,1]

w(r)|r|
∫

[0,2π]

|pn|q|φ′(t)| dtdr = cqn

∫

[0,2π]

g(t)|φ′(t)| dt. (20)

Now by the Lq Schur type inequality (14) applied to the trigonometric polynomial pn(r cos t, r sin t)
of variable t with the doubling weight |φ′(t)| and w1(t) we obtain by (19)

∫

[0,2π]

g(t)|φ′(t)| dt =
∫

[−1,1]

w(r)|r|
∫

[0,2π]

|φ′(t)||pn(r cos t, r sin t)|q dtdr

≤ cn

∫

[−1,1]

w(r)|r|
∫

[0,2π]

φ(t)|pn(r cos t, r sin t)|q dtdr = cn

∫

B2

|pn|qw∗ dxdy.

This estimate together with (20) yields
∫

[0,2π]

|g′(t)φ′(t)| dt ≤ cn2

∫

B2

|pn|qw∗ dxdy.
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3rd term. Again by the Hölder and Lq Bernstein type inequality (12) with the doubling weight
φ applied for the first and second derivatives of the trigonometric polynomial pn(r cos t, r sin t) of
the variable t

∫

[0,2π]

|pn|q−1
∣

∣

∣

∂2pn
∂t2

∣

∣

∣
φ(t) dt+

∫

[0,2π]

|pn|q−2
(∂pn

∂t

)2
φ(t) dt

≤
(

∫

[0,2π]

∣

∣

∣

∂2pn
∂t2

∣

∣

∣

q
φdt

)1/q( ∫

[0,2π]

|pn|qφdt

)(q−1)/q

+

(
∫

[0,2π]

∣

∣

∣

∂pn
∂t

∣

∣

∣

q
φdt

)2/q( ∫

[0,2π]

|pn|qφdt

)(q−2)/q

≤ cn2

∫

[0,2π]

|pn|qφdt.

Thus
2π
∫

0

|φg′′| dt ≤ q2
∫

[−1,1]

w(r)|r|
∫

[0,2π]

(

|pn|q−1
∣

∣

∣

∂2pn
∂t2

∣

∣

∣
+ |pn|q−2

(∂pn
∂t

)2)

φdtdr

≤ cn2q2
∫

[−1,1]

w(r)|r|
∫

[0,2π]

|pn|qφdtdr = cn2

∫

B2

|pn|qw∗ dxdy.

Summarizing we can see that each integral on the right-hand side of (18) can be estimated by

cn2

∫

B2

|pn|qw∗ dxdy yielding

π

2mn

2mn−1
∑

j=0

φ(tj)g(tj) =
π

mn

mn−1
∑

j=0

φ(tj)g(tj) =
(

1 +O(m−2)
)

∫

B2

|pn|qw∗ dxdy. (21)

Furthermore,

g(tj) :=

∫

[−1,1]

|pn(r cos tj, r sin tj)|qw(r)|r| dr,

where each pn(r cos tj, r sin tj), 0 ≤ j ≤ 2mn, is an algebraic polynomial of degree at most n of the
variable r ∈ [−1, 1]. Therefore Corollary 2 is applicable now to every polynomial pn(r cos tj, r sin tj),
1 ≤ j ≤ mn, with the doubling weight w(r)|r| and nodes rk := cos tk yielding

(

1+O(m−2)
) π

mn

mn−1
∑

k=0

√

1− r2k|rk|w(rk)|pn(rkeitj )|q =
∫

[−1,1]

|pn(r cos tj , r sin tj)|qw(r)|r| dr = g(tj).

Using this relation combined with (21) we obtain

(

1 +O(m−2)
)

∫

B2

|pn|qw∗ dxdy =
( π

mn

)2
mn−1
∑

k,j=0

ak,j
∣

∣pn(rke
itj )

∣

∣

q
,

where

ak,j := φ(tj)w(rk)|rk|
√

1− r2k =
φ(tj)w(cos tk)| sin 2tk|

2
, 0 ≤ k, j ≤ mn. �

Theorem 5 can be used to obtain similar Marcinkiewicz—Zygmund type result with a quadratic
error term for various other multivariate domains, like for a instance simplex or a ball. If for example
∆ := {(u, v) ∈ R : 0 ≤ u, v ≤ 1, u+ v ≤ 1} is the standard simplex on the plane then evidently

∫

∆

|pn(u, v)|q dudv =

∫

B2

|pn(x2, y2)|q|xy| dxdy
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and hence Theorem 5 is immediately applicable with w∗(x, y) := |xy|, w(r) = r2, φ(t) = sin t cos t.
Furthermore, if we consider the unit ball B3 ⊂ R

3 then clearly using the cylindrical coordinates
∫

B3

|pn|q =
1

2

∫

[0,2π]

∫

B2

|pn(x, y sin t, y cos t)|q|y| dxdydt.

Now Theorem 5 is applicable for the integral on B2 with w∗(x, y) := |y| and bivariate algebraic
polynomial pn(x, y sin t, y cos t) = gn(x, y) of the variables x, y. Subsequently, we can also use
Theorem 3 for the univariate trigonometric polynomials pn(xj , yk sin t, yk cos t) of variable t in order

to obtain proper discrete expressions for the integrals

∫

[0,2π]
|pn(xj, yk sin t, yk cos t)|q dt. This will

yield a Marcinkiewicz—Zygmund type result with a quadratic error term for the ball B3 ⊂ R
3. We

refer the reader to [4] for the discussion of various geometric transformations which enable to pass to
new multivariate domains in Marcinkiewicz—Zygmund type inequalities. This can lead to deriving
additional Marcinkiewicz—Zygmund type results with a quadratic error term.

Let us also mention that the technique used in the proof of Theorem 5 allows to extend the
Marcinkiewicz—Zygmund type result given for univariate trigonometric polynomials in Corollary 1
to the case of multivariate trigonometric polynomials. Let us denote by T d

n the space of real
trigonometric polynomials of d variables and degree at most n in each variable.

Theorem 6. For any 2 ≤ q < ∞, n ∈ N, d ≥ 1, and every tn ∈ T d
n we have

( π

mn

)d ∑

j∈Zd
mn

∣

∣

∣
tn

( πj

mn

)∣

∣

∣

q
=

(

1 +O
( 1

m2

))

∫

[−π,π]d

|tn(x)|q dx,

where Z
d
mn := {k = (k1, . . . , kd) ∈ Z

d : −mn ≤ kj ≤ mn− 1, 1 ≤ j ≤ d}.

P r o o f. We outline the proof by induction on the dimension d. For d = 1 the statement of
the theorem is given by Corollary 1. Assume that Theorem 6 holds for d− 1, d ≥ 2. Clearly,

∫

[−π,π]d

|tn(x)|q dx =

∫

[−π,π]

∫

[−π,π]d−1

|tn(y, t)|q dydt =
∫

[−π,π]

g(t) dt,

where

g(t) :=

∫

[−π,π]d−1

|tn(y, t)|q dy.

Then similarly to (10)

∣

∣

∣

∣

∫

[−π,π]

g(t) dt − π

mn

∑

−mn≤j≤mn−1

∣

∣

∣
g
( πj

mn

)∣

∣

∣

∣

∣

∣

∣

≤ 1

2

( π

mn

)2
π
∫

−π

|g′′(t)| dt.

Furthermore, analogously to (11) and the subsequent estimates in the proof of Theorem 2 it can be
shown that

π
∫

−π

|g′′(t)| dt ≤ q2n2

∫

[−π,π]d

|tn(x)|q dx.

Thus combining the above relations yields

(

1 +O
( 1

m2

))

∫

[−π,π]d

|tn(x)|q dx =
π

mn

∑

−mn≤j≤mn−1

∣

∣

∣
g
( πj

mn

)
∣

∣

∣
.
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Now it remains to note that

g
( πj

mn

)

=

∫

[−π,π]d−1

∣

∣

∣
tn

(

y,
πj

mn

)
∣

∣

∣

q
dy,

where tn

(

y,
πj

mn

)

∈ T d−1
n , 1 ≤ j ≤ d. Hence the proof can be completed by using the induction

hypothesis for every

∫

[−π,π]d−1

∣

∣

∣
tn

(

y,
πj

mn

)
∣

∣

∣

q
dy, 1 ≤ j ≤ d. �
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