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ON A REFINEMENT OF MARCINKIEWICZ-ZYGMUND TYPE INEQUALITIES

A.Kroé
The main goal of this paper is to verify a refined Marcinkiewicz—Zygmund type inequality with a quadratic
error term
1 nm—1 n
5 2 @~ zou@)la(e)l = 1+ 0m2) [w@lt@l"ds, 2<q<ox,
Jj=0 -
where ¢, is any trigonometric polynomial of degree at most n, —7 = 20 < 21 < -+ < Tmn = T,

max (zj41—x;) =0 (—), m,n € N, and w is a Jacobi type weight. Moreover, the quadratic error term
0<j<mn—1 nm

O(m™2) is shown to be sharp, in general. In addition, similar results are given for ¢ = oo and in the multivariate
case.
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1. Introduction

The starting point for the present paper is the classical Marcinkiewicz—Zygmund result [11]
stating that for any univariate trigonometric polynomial ¢,, of degree at most n and every 1 < ¢ < oo

we have )
1 e s
ol 5 3
/'”' ng "\2n+1

where the constants depend only on ¢. This equivalence relation is an effective tool used for the
discretization of the L, norms of trigonometric polynomials, which is widely applied in the study of
the convergence of Fourier series, Lagrange and Hermite interpolation, positive quadrature formulas,
and scattered data interpolation; see for instance [10] for a survey on the univariate Marcinkiewicz—
Zygmund type inequalities. An important generalization of (1) for the so-called doubling weights

q

: (1)
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was given by Mastroianni and Totik [12]. Recall that a nonnegative integrable weight w on [—m, 7]
is called doubling if with certain L > 0 depending only on the weight

/wSL/w, IC[—m, 7]
21 T

for any interval I and 2 being its double with the same midpoint. In particular, all generalized
Jacobi type weights satisfy the doubling property. Then as shown in [12] there exists an integer

my € N (depending only on the weight) such that whenever m > m,, we have with z; := %,
0<5<2mn
1
Bu > gl [l <an 3 gl YaeT, @
0<j<2mn—1 1 0<j<2mn—1

where T, stands for the set of real trigonometric polynomials of degree at most n, ¢; :=

z;j+1/n
/ w(t)dt, 0 < j <mn, and A,,, B,, > 0 depend only on m and w.
z;—1/n

Subsequently, in [4] similar Marcinkiewicz—Zygmund type inequalities were given for various
multivariate domains, in particular polytopes, cones, spherical sectors, tori, etc.

A crucial feature of estimates (2) consists in the fact that the constants A,,, By, are independent
of the degree n of the trigonometric polynomials. On the other hand, it is natural to expect that the
optimal constants must satisfy the relations A,,, B,, — 1 as m — oco. Indeed, a careful examination

1
of the proofs given in [4] reveals that estimates similar to (2) hold with A,,, B,, =14+ O (—> This
leads to the question of the sharp rate of convergence A,,, B,, — 1 as m — o0o. The main goal of
the present paper is to verify that when ¢ > 2 Marcinkiewicz—Zygmund type inequalities analogous

to (2) hold with
Am,Bn=1+0 ! 3

This quadratic error term for the constants A,,, By, will be verified for both algebraic and trigono-
metric polynomials of one and several variables. Moreover, we will also show that in general the

error term O(%) is the best possible. The problem of finding the correct asymptotics of A,,, B
is similar to the so-called “Marcinkiewicz problem with €” raised in [3, p. 5], which corresponds to
the situation when A,,, B,, = 1 + €.

The analogue of Marcinkiewicz—Zygmund type inequalities for ¢ = oo is the notion of admissible
meshes or norming sets, see [2;6|. Admissible meshes Y,, C K, n € N, are discrete point sets

satisfying with some ¢ > 0 depending only on K
Iplx <cllpllv, ¥YpeP], VneN, (4)

where P? stands for the set of algebraic polynomials in d variables of total degree at most n, and
lpllp denotes the usual sup norm on the compact set D C R?. If, in addition, card Y;, ~ n<, then
the admissible mesh is called optimal. In [8] it was shown that star-like C2-domains and convex
polytopes in R? possess optimal meshes, while in [9] the existence of optimal meshes was verified
for every convex domain on the plane.

Recently in [13] it was proved that for a C2 star-like domain K C R? there exist optimal meshes

1
of cardinality (mn)? so that (4) holds with ¢ = 1+ O<W>’ m € N. This exhibits a quadratic error

term when g = co. However, the question of sharpness of this quadratic error term when ¢ = oo
was not addressed in [13]. We will fill in this gap below.

1
This paper is organized as follows. First we will prove the sharpness of c =140 (—2) in (4) for
m

every compact set K C R? and each mesh with card Y;, ~ (mn)? (Theorem 1). Then we will verify
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Marcinkiewicz—Zygmund type inequalities (2) with quadratic error terms (3) for both algebraic and
trigonometric polynomials, see Theorems 2, 3 and Corollaries 1, 2. In addition, it will be proved

1
that, in general, the error term O (—2) is the best possible (Theorem 4 below). Finally, Theorem 5

gives similar estimates on the disc and this allows to proceed to more general multidimensional
domains.

Let B(x,r) stand for the closed ball in R? of radius r and center x. Furthermore, we denote by
Rg and rg the radii of the smallest ball containing K and of the largest ball embedded into K,

r
respectively. Moreover, pg = R—K is the so called distortion constant of K.
K

Theorem 1. Consider any compact set K C R? with nonempty interior. Then for each subset
Y, C K of cardinality (mn)? > 2, m,n € N there exists Q € Pg, such that

2
PK >
> (14 % . 5
lQlx = (1+ 255 )Illy, (5)
If in addition K is convex or convexr and central symmetric then the above estimate holds with py
1

Vd’
In the proof of Theorem 1 we will use the following “needle polynomial” type result. Denote by

T, (x) := cos(n arccos x) the classical Chebyshev polynomial.

1
replaced by p or respectively.

Lemma 1. For any 0 < h < 1 consider the even univariate polynomial

202 —h?2 -1
To(= =) € P

Then |q,(x)| < 1 for every h < |z| <1 and

|gn(0)| > 1 + 2n2h2. (6)

Proof Clearly, -1 < ——————— <1 for h < |z| < 1 and thus |g,(z)| < 1 on this set.

Moreover, by the well-known representation of Chebyshev polynomials

T(e) = 5 (@ + VaZ = 1" 4 e~ Va? — 1)

it follows that

1+ h? 1/14h? 2h \n 171+ h? 2h \n  (1+h)?"+(1—h)>
’q"(o)’_T"(1—h2)_§<1—h2+1—h2> 5(1—h2_1—h2> - 2(1 — h2)n ’

Hence using the binomial formula

1+ (3)h?

= n2y = (1+n(2n — DA2) (1 + 12" > (14 n(2n — DA?) (1 +nh?) > 1420202 O

|4n(0)] =

P roof of Theorem 1. Consider any subset ¥;, C K of cardinality (mn)?. Denote by

S

the fill distance of Y, in K. Then we clearly have K C (Uyecy, B(Y,sn)), and hence denoting by
mg the Lebesgue measure of the unit ball in R?

r?(md <m(K) < (mn)dsﬁmd,
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where m(K) is the Lebesgue measure of K. In addition, at least one of the above inequalities has
to be strict yielding
T < Mmnspy. (7)

Furthermore, by the definition of s, there exists x9 € K such that for every y € Y,, we have
|X0 - Y| > Sp.
Now set

Q0 = 0 (B220),

where ¢, is the needle polynomial of Lemma 1 of degree 2n with

ho— TK _ PK
" 2mnRig  2mn’

Note that since g, is an even univariate polynomial of degree 2n it follows that Q) € P2dn. Furthermore,
since K is contained in a ball of radius R it clearly follows that the diameter of K is at most 2R .
Thus for every y € Y,, we have by (7)

h— TK < Sn < |y - X0|
2mnRix  2Rgk 2R

<1

Hence by Lemma 1 we have ||Q]|y,, < 1. Finally, by (6) we obtain

2 2
QU > 1Q00)| = lan(0)] > 1+ 207K = 1+ L > (14 LK Y gy,

Now assume that K is convex. First it should be noted that definition (4) of norming sets of K
is invariant under regular affine transformations of the domain. That is if Y;, is a norming set of K
then for any regular affine map 7' : R? — R? the set T(Y;,) is a norming set of T(K) with the same
norming constant ¢ in (4). Secondly, by the John’s maximal ellipsoidal theorem [7] there exists a
unique ellipsoidal Ex of maximal volume and center cx such that Fx C K C cx + d(Ex — ckg),
where Er = T(B(0,1)) with some regular affine map 7 : R? — R?. Moreover, if in addition K is
convex and central symmetric then the same holds true with V/d instead of d. Thus when K is convex
we may assume without loss of generality that B(0,1) ¢ K C B(0,d), or B(0,1) C K C B(0,/d)
in the central symmetric case. Therefore, if K is convex, or convex and central symmetric we can

assume that pg = , respectively. Using these relations together with (5) completes

1
4 Oor P = ﬁ
the proof of the theorem. O

2. Refined Marcinkiewicz—Zygmund inequalities for univariate polynomials

Our next result refines the classical Marcinkiewicz—Zygmund inequality. It provides constants
1

of order 1+ O<—2> in (1) when discretization is accomplished with mn nodes. A basic tool needed
m

below is the L, Bernstein inequality for trigonometric polynomials, see [5, p. 102], or [1]. It states
that for every t,, € T,

Ity < nlltnllz,

Theorem 2. Foranyn, NeN, ¢>2, —m=xy<z1<---<zy=m andt, €T, we have

m N-1 nha)2 [
[t e = 5 S g = i ltlaple] < L o 0
T Jj=0 -

where hy := maxo<j<N—1(Tj41 — &), T_1 = TN_1 — 27.
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P roof. We will use the following elementary trapezoidal integration rule which can be easily
verified by repeated integration by parts for any function f whose first derivative is absolutely

continuous
b
[ syae = - L0

We have by (9) setting f,,(x) := |t,,(x)|?

b

l/fwwa—@w—wwm. (9)

a

1
2

w L= )(tala )l + [tz 10)|9)
Tjr1 — Tj Z; Lj+1
/w |wx—§j/uwmwngg(] S Ry,
Zj -
where
Tj+1 h2 Tj+1
1
Ryi=y [ S - oap o) de, (B < S [ 151 do
Tj Tj
It is easy to see that
1 N-1 1 N-—1 1 N
5 2 @ir1 =) ([ta(@)? + [tn(z540)[7) = 5 > (w1 — m) [t ()] + QZ(HJj—xj—l)\tn(ﬂfj)\q
=0 =0 j=1
1 N-1
5 (zj+1 — @) [tn(z;)]"

=0
Thus, combining the above relations, we get

N—

N-1 T
1 h?
szmmwwizmﬂxﬂu% Z o R 1@l 0

Since obviously
[fn(@)] < alg = Dlta(@)[772(t)* + alta (@) |t7],
it follows that

h2
7)< Mta =D ﬂt\” W/u\“uw (11)

Using the Holder inequality and the L, -Bernstein inequality for trigonometric polynomials we obtain
for the first integral in (11)

2
/It T2 (t0)? do < [tallT, 1817, < nPlltallZ, -

Likewise, for the second integral we have

s
— —1
/waww%#m$smmauamw§#wma.
—T7

h?vq2n2

Substituting the last two estimates in (11) we finally obtain |R| < a3 ,» Which is the
needed upper bound. [J
Theorem 2 easily yields the next Marcinkiewicz—Zygmund type result for trigonometric polyno-

. . . . . i .
mials which provides a remainder term of quadratic accuracy. We set x; := —‘7, —mn < j < mn,
mn

to be the 2mn equidistant points on the period. Then h,, = " in (8) yielding the next corollary.
mn
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Corollary 1. For any 2 < g < 00, m > 3q, n € N, and every t, € T,, we have with some
2

™
<
<

. mn—1 i q c 2 m
— E tn<—‘7)‘ = (1+ %) / |tn(2)]? dz.
mn mn m

=—mn g

Now we proceed to verifying weighted versions of Theorem 2. In order to prove weighted
Marcinkiewicz—Zygmund type inequalities we need to recall certain L, Bernstein and Schur type
inequalities with doubling weights which can be found in [12]. It is shown in [12] that given any
doubling weight w and 1 < ¢ < oo there is a constant ¢ > 0 depending only on the weight such that
for every trigonometric polynomial of degree at most n

/|t;(x)|qwd:n§cnq/|tn(x)|qwd:17. (12)

Consider now a periodic Jacobi type weight

w(z) == wo() H |z —yl™,  x, yk € [-m, 7],
1<k<s

ap>1, 1<k<s, se€N, wyecC?-mm7|, wy>O0. (13)

The defect of this weight denoted by d,, is defined as d,, := maxy ag. The following Schur type
inequality is given in [12]: for any doubling weight w*, 1 < ¢ < oo, and every trigonometric
polynomial of degree at most n

/ |tn(2)|9w* dz < enw / |ty (z)|Tww* dz, (14)

where the constant ¢ > 0 depends only on the weights.

Theorem 3. Let w be a Jacobi type weight (13). Then for anyn, N € N, ¢ > 2, —w =2 <
<~ <zxy=m, andt, €T, we have

N—1 A
1
5 D (@i — z-r)w(e))lta(e)|? = (1+O(¢*n*hY)) /w(fﬂ)ltn(x)lqd:v, (15)
J= -7
where hy 1= 0<1;1:1<%<_1(a;j+1 — x;) and the constant in the O(...) term depends only on the weight.

1
In particular, if N =nm, m € N, and hy = O(—) then we get
nm

™

(41 = 22l a7 = (1+0(m™) [ w(@)lta(o)]" da.

Jj=0 “r

N—

,_.

N —

Proof Evidently we can apply estimate (10) with |¢,|? replaced by w(x)|t,(z)|?, and in
particular, f,(x) := w(z)|t,(x)|?. Then in turn (11) can be replaced by the estimate

[R| < q2h?v/ (w(tn)?[tal*™2 + wlta| "7 [t7] + [tal* | + [ta]|w"]) da. (16)

—Tr
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Now we will estimate the four terms on the right hand side of (16) by repeated application of
the Holder inequality and weighted L, Bernstein and Schur type inequalities.
Define

ltall 0y = [ w@)ltn(o)]"da.
1st term. For the first term we use the Holder inequality and L, Bernstein inequality (12) with
the doubling weight w. Then we have

Y e I e S VS A e Y A R LA e

2nd term. Again the Holder inequality and (12) yield

™ ™
[ wltatr el de = [ o b de < el 1w < ol

—Tr —T

3rd term. This case is somewhat trickier. First we use the Holder inequality to deduct

. = (g—1)/q 7 1/q
/mwwmmmg</mwwm) (/mmwm). an)

Then for both integrals on the right hand of (17) we can use the Schur type inequality (14) with
the doubling weight |w’| and Jacobi type weight

wi (z) = H |z — yg|, dw, = 1.
1<k<s

It can be easily verified that |w'(z)|w(x) < cw(x), = € [—m, 7], with some ¢ > 0 depending only
on the weight. Thus by (17) and (14)

P P (¢-1)/ 1/q
/|tn|q—1|t;w'|d:n §c<n/|tn|q|w'|w1 dm) ( /|t 9]0 |y d:n>
T (¢—1)/q A 1/q
§cn< /]tnlqwdx> </]t;\qwdx> .

/g g 1/q<
|tn| wax = CnthHLq(w)

Clearly the last two upper bounds imply the following estimate of the 3rd term:

Furthermore, by (12)

™

[ talt e i < en el = el

—Tr

4th term. This time we apply Schur type inequality (14) for the doubling weight |w"”| and Jacobi
type weight

wa(x) == H 2 =yl duy = 2.
1<k<s
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Again it can be verified that |w”(z)|ws(z) < cw(z), x € [—m, 7], with some ¢ > 0 depending only
on the weight. Then by (14)

s

/|t 9| de < en? /|tn|q|w wy dr < en? /w|t [1dz = en?lltall? .

—Tr

The above estimates verify an upper bound of order n?|[t,[|? (w) for each term on the right-hand
q

side of (16) with a constant depending only on w. Hence summarizing we find from (16) that
2 2
BRI < el .

Evidently, this upper bound immediately implies the required estimate (15). O

Theorem 3 implies a Marcinkiewicz—Zygmund type result for univariate algebraic polynomials
with a remainder term of quadratic accuracy for a Jacobi type weight (13) on [—1,1]. Indeed, the
next corollary easily follows from the second relation in Theorem 3 by a standard trigonometric
substitution x = cosy.

Corollary 2. Let m,n € N, 2 < q < oo, and set x; := cosﬂ, 1 <j<mn-—1. Then for
mn
every pn, € P} and any Jacobi type weight w on [—1,1] given as in (13) we have

B 1
mi Z \J1— x w(x;)|pn(z;)|? = (1 +O(m_2)) /w(az)]pn(a:)]q dx.
j=1 21

Relation (8) of Theorem 3 yields an L, Marcinkiewicz—Zygmund type result

mn—1 n

S Y (@1 —zjo)w(y)|tn(z;)|* = (14 O(m™?)) /’w(l’)!tn(l’)!q dv Vi, €Ty
=0

—T

N —

1
when maxo<j<mn—1(Zj41— ;) ~ —m 2 < ¢ < oo. This raises the natural question if the quadratic

accuracy provided by the term O(m™2) in the above relation is the best possible. It turns out that
in general the term O(m™2) cannot be improved further. This is shown by the next theorem in the
model case of Ly norm.

Theorem 4. There exist points —m = 20 < 1 < +++ < Ty, = T With

(w1 =) = o
0< oo Tt T X)) = g
such that
1 mn—1 2 n
7 - (2j41 — xj—1) cos® nxj < <1 - W) /COS2 nx dzx.
Jj=0 o
Proof. Seth=hpy,= L, zj = l—2hj, 0<j<m-—1,and y; := 1+hj, 1<j<2m.
8mn 4dn 4dn

T
This provides a total of 3m distinct points on the interval [0, 2—] which are 2h-equidistant on
n

[O, 41] and h-equidistant on [41, 21] We extend this system of points to [—m, 7| by symmetry
n n’ 2n

about the origin and T periodicity. This yields a total of 12mn distinct points on [—, 7w] which are
n

denoted by -t =29 <21 < ---<zxy=m, N:=12mn — 1.
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Then similarly to (10) we obtain this estimate with f,,(z) = cos? nz, f(z) = —2n?%cos2nz
A 1Nl N_1 Ti+1
R:= /C082 nx dx — 3 Z(xﬂ“ — xj_1)cos’ nzj = Z (x — xj)(zj41 — ) cos 2nx dz.
J i=0 =0 7

Hence by the T periodicity and central symmetry of the point system
n

Tj+1
R =4n3 Z (x — ;) (zj41 — ) cos 2nx dz.
[z5,25+1]C[0,55) z;
Furthermore,
Tj+1 Zj
Z / (x — xj)(xj41 — ) cos 2nx dx = Z < / x — zj41)(zj — x) cos 2nx dx
[zj,2541]1C[0,5,) z; 0<jsm—1 *, %,
Y2j+1 Y25+2
+ / (¥ = y25) (Y2541 — y) cos 2ny dy + / (4 = y2541) (Y2j+2 — y) cos 2ny dy>.
Y2j Y25+1

T 7T
Moreover, substituting y = on x in the last two integrals and noting that y; = on 2jy Y241 =

0
— — 2j + h, we see that

2n
Zj Y2j+1
/ (x — zj4+1)(zj — x) cos 2nx dx + / (y — y2j)(y2j4+1 — y) cos 2ny dy
Zj1 Y2j
Y2j+2 z
+ / (¥ — y25+41)(Y2j42 — y) cos 2ny dy = h / (h — |z — zj + hl)+ cos 2nz dz.
Y2j+1 Zj+1

Combining the last three relations we obtain

zj
R = 4hn? Z / —|z—2j+h|)4 cos 2nx dz > 4hn? Z (h—|x—z;+h|)4 cos 2nx dx
0<j<m— 1z3+1 m/2§j§m—1zj+1
Zj
> V/8hn? Z / (h— |z — 2z + h|)4 dx
m/2§j§m—lzj+1
9 ™
= /Shn? Z h2 > Pndm = & /0082 nz dx.
m/2<j<m—1 o
This estimate immediately implies the required lower bound. O

R em ark. Theorems 2 and 3 together with Corollaries 1 and 2 provide an L, Marcinkiewicz—
Zygmund type result for univariate algebraic and trigonometric polynomials with a remainder term
of quadratic accuracy in the case when 2 < ¢ < co. Moreover, by Theorem 4 this quadratic error
term is in general sharp when ¢ = 2. The sharpness in the case g > 2 could be verified similarly.
However, for 1 < ¢ < 2 our method yields only a weaker O(m™!) error term instead of O(m~2).
The question of determining the sharp error term for 1 < g < 2 appears to be an interesting open
problem.
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3. Refined Marcinkiewicz—Zygmund inequalities for multivariate polynomials

Now we extend our considerations to the multivariate case. The main building block in several
variables consists in verifying a Marcinkiewicz—Zygmund type result with a quadratic error term
for the 2-dimensional unit disc B2 C R2. Then using the technique developed in [4] one can apply
certain transformations of the domain like rotation or symmetry to obtain a similar result for the
d-dimensional ball and simplex.

Theorem 5. Consider the weight w*(z,y) := w(r)é(t), © =rcost, y = rsint, where w(r) and
¢(t) are Jacobi type weights (13), w(r) is even on [—1,1], and ¢(t) = ¢(t + ), t € R. Then setting
mJ

t; = . 0 < j < 2mn, we have for every q > 2 and p, € P2
T2 mn—1 '
(1 0m ) [ Ipalasa)lw o) dody = () 3 alpnlcostue )l
B2 J=

where ay j == P(t;)w(costy)|sin2ty|/2, 0 < k,j < 2mn, and O(m=2) depends only on q and w*.

P roof. Using the polar coordinates x = rcost, y = rsint and the relation ¢(t) = ¢(t + )
we have

Han%q(w*) :/|pn|qw* dxdy
B2

2m 1 2m
1 1
=5 [ ¢0) [ Ipatrcostorsint)tuirirldrde = 5 [ otg(o)dt. pa € P
0 -1 0

where
1

g(t) :== /\pn(rcost,Tsint)]qw(r)\rldr.
]

Then similarly to (10) we obtain

2r i 2
R:= '% [ ot de - ﬁzzlwyug(tﬁ») < (50=)" [ 100g)1ae
0 Jj=0 0

2 27 27
2
< (50) ( [1oslar+2 [1og1ae+ [ r<z>g”rdt>. (18)
0 0 0

Similarly to the proof of Theorem 3 the three terms on the right-hand side of (18) can be estimated
using Hélder, Schur, and Bernstein type inequalities together with the Fubini theorem. The Schur
type inequality (14) will be used below with the Jacobi weights

wl(t) = H ’t - yk‘? dwl =1, wQ(t) = H ‘t - yk‘27 dwz =2,
1<k<s 1<k<s

where ¢(t) = [[1<p<q |t — i, ar > 1. It can be easily verified that with some ¢ > 0 depending
only on the weight

|6/ (®)|wi(t) < co(t), 16" ()|wa(t) < cd(t), ¢ € [0,2]. (19)



206 A. Kroé6

1st term. Then by the Fubini theorem and L, Schur type inequality (14) applied to the trigo-
nometric polynomial py,(r cost,rsint) of the variable ¢ with the doubling weight |¢”(¢)| and w(¢)
we obtain by (19)

27 27
/|¢”|gdt: / w(r)|r|/|¢”(t)||pn(rcost,rsint)|qdtdr
0 0

[_171]

2w

< cn? / w(r)]r\/](b”(t)\wg(t)]pn(rcost,rsint)\qdtdr
0

[_171]

< en? / w(r)\r!/qﬁ(t)]pn(rcost,rsint)\qdtdr:cn2/]pn]qw* dxdy.
~1,1] 0

2nd term. First we use the Holder inequality to obtain for any r € [0, 1] and p,, = p,,(r cost, rsint)

[ e owra s ([ [ 2eoora) ([ o)

[0,27] [0,27] [0,27]

Since for every r € [—1,1], p, = pn(rcost,rsint) is a univariate trigonometric polynomial of
degree at most n we have by the L, Bernstein inequality (12) with the doubling weight |¢'(¢)|

( JREN |dt>1/q3cn( / |pn|q|¢/<t>|dt>1/q Vre L]

[0,27] [0,27]

Combining the last two estimates yields

[ el <en [ paps@la vre L

[0,27] [0,27]

Hence using the above estimate and the Fubini theorem, we get

Opn
/\g rdt<q/ Pir] / a2 191 v
[0,27] [—1,1] [0,27]
< cqn / w(r)|r] / [pal?]6/(8)] dtdr = cqn / o018 (1)) dt. (20)
[—1,1] [0,27] [0,27]

Now by the L, Schur type inequality (14) applied to the trigonometric polynomial py,(r cost, rsint)
of variable ¢ with the doubling weight |¢/(¢)| and w1 (¢) we obtain by (19)

/g(t)]qﬁ'(t)\dt: / w(r)|r| / | (#)||pn (7 cos t, rsint)|? dtdr

[0,27] [-1,1] [0,27]

<cn / w(r)|r| / (b(t)\pn(rcost,rsint)\qdtdr:cn/\pn\qw* dxdy.
~1,1] [0,27] B2

This estimate together with (20) yields

/ lg' ()¢ (t)| dt < en? /]pn]qw dxdy.

[0,27]
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3rd term. Again by the Holder and L, Bernstein type inequality (12) with the doubling weight
¢ applied for the first and second derivatives of the trigonometric polynomial p,(r cost,rsint) of

the variable ¢
[ palr?
Pn at2

tydt + / Ipn]72 ap" b(1) dt

[0,27] [0,27]
9p, 1/q (a=1)/ Apy, 2/q (a—2)/q
</\afz ¢dt> (/|pn|q¢dt> (/\p ¢dt> (/|pn|q¢dt>
[0,27] [0,27] [0,27] [0,27]
<o [ ot
[0,27]
Thus
21 a
" < 42 qg—1 Pn
Jogta<e [ wmirl [ (oS5 |+ 2 (B2)" ) drar
0 [=1,1] [0,27]

< en’q? / r)|r| / ]pn]q(bdtdr—cn /]pn]qw dzdy.
—1,1] [0,27]

Summarizing we can see that each integral on the right-hand side of (18) can be estimated by

cnz/ |pn |Tw™ dxdy yielding
B2

2mn—1 mn—1
m m
o 2o )9(6) = 20 3 6lt)at) = 1+ Ol / ol dedy.  (21)
]: ]:
Furthermore,

g(t;) = / |pn (1 cost;, rsint;)|%w(r)|r|dr,
[_171}
where each py(rcostj, rsint;), 0 < j < 2mn, is an algebraic polynomial of degree at most n of the

variable r € [—1, 1]. Therefore Corollary 2 is applicable now to every polynomial p,(r cost;, rsint;),
1 < j < mn, with the doubling weight w(r)|r| and nodes ry, := costy yielding

(14+0(m mﬁ:l /1= 127w () [pn (ree™)|? = / |pn(r costy, rsint;)|%w(r)|r| dr = g(t;).
[-1,1]
Using this relation combined with (21) we obtain
q ™2 itj\ |9
(1+0(m /|pn| w* dedy = <%) k%;O ak,j‘pn(rke 3)| ,

B2

where
@(tj)w(cos ty)|sin 2t

ayj := ¢ty )w(ry)lrrl\/1 — 717 = 5 ,

Theorem 5 can be used to obtain similar Marcinkiewicz—Zygmund type result with a quadratic

error term for various other multivariate domains, like for a instance simplex or a ball. If for example
A:={(u,v) eR: 0<wu,v <1, u+wv <1} is the standard simplex on the plane then evidently

0<k j<mn. O

/ [P, 0) | dudv = / ipa(a, )| y] dady

A B2
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and hence Theorem 5 is immediately applicable with w*(z,y) := |zy|, w(r) = r2, ¢(t) = sint cos't.
Furthermore, if we consider the unit ball B3 C R? then clearly using the cylindrical coordinates

1 .
/’pn’q: 3 / /\pn(x,ysmt,ycost)\q\y]da:dydt.
B3

[0,271] B2
Now Theorem 5 is applicable for the integral on B? with w*(x,y) := |y| and bivariate algebraic
polynomial p,(z,ysint,ycost) = gn(x,y) of the variables x,y. Subsequently, we can also use

Theorem 3 for the univariate trigonometric polynomials p,(x;, y sint, yi cost) of variable ¢ in order

to obtain proper discrete expressions for the integrals / |pn (25, yi sint, yy, cos t)|? dt. This will
0,27

yield a Marcinkiewicz—Zygmund type result with a quad[mti]c error term for the ball B3 C R3. We

refer the reader to [4] for the discussion of various geometric transformations which enable to pass to

new multivariate domains in Marcinkiewicz—Zygmund type inequalities. This can lead to deriving

additional Marcinkiewicz—Zygmund type results with a quadratic error term.

Let us also mention that the technique used in the proof of Theorem 5 allows to extend the
Marcinkiewicz—Zygmund type result given for univariate trigonometric polynomials in Corollary 1
to the case of multivariate trigonometric polynomials. Let us denote by T.¢ the space of real
trigonometric polynomials of d variables and degree at most n in each variable.

Theorem 6. For any 2 < q< oo, n €N, d>1, and every t,, € T we have

(o)’ (' = 0 0()) [ tutorin

mn [_7‘-77‘—}[1

where 2%, == {k= (k1,...,ka) € Z%: —mn <k; <mn -1, 1 <j <d}.

P roof. We outline the proof by induction on the dimension d. For d = 1 the statement of
the theorem is given by Corollary 1. Assume that Theorem 6 holds for d — 1, d > 2. Clearly,

[ |qu-/ [ omdva= [ g,
[—m,m]d [—7,7] [—m,m]d—1 [—m,m]

where

Then similarly to (10)

I IPCTRE S G T PR VES oy T

[—7,7] —mn<j<mn—1

Furthermore, analogously to (11) and the subsequent estimates in the proof of Theorem 2 it can be

shown that i
/ 9" ()] dt < *n? / £ ()] dx.

[_ﬂvw}d

Thus combining the above relations yields

(1+o(z2)) [ borax=7 52 oG]

(=774 —mn<j<mn—1
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Now it remains to note that

T\ |4
tn <Y7 —) ‘ dY7
mn

o(L)- |
[~m,x]d=1

where , (y, ﬂ) € Tg_l, 1 < j < d. Hence the proof can be completed by using the induction
mn

hypothesis for every

10.

11.
12.

13.

ta(y, 22)|"ay, 1<j <. O
mn

[—7,m]d-1

REFERENCES

. Arestov V.V. On integral inequalities for trigonometric polynomials and their derivatives. Math. USSR-

Izv., 1982, vol. 18, no. 1, pp. 1-17. doi: 10.1070/IM1982v018n01ABEH001375 .

Calvi J.P., Levenberg N. Uniform approximation by discrete least squares polynomials. J. Approz.
Theory, 2008, vol. 152, pp. 82-100. doi: 10.1016/j.jat.2007.05.005 .

Dai F., Prymak A., Temlyakov V.N., Tikhonov V.N. Integral norm discretization and related problems.
Russian Math. Surveys, 2019, vol. 74, no. 4, pp. 579-630. doi: 10.1070/RM9892 .

De Marchi S., Kro6 A. Marcinkiewicz—Zygmund type results in multivariate domains. Acta Math.
Hungar., 2018, vol. 154, pp. 69-89. doi: 10.1007/s10474-017-0769-4 .

DeVore R.A., Lorentz G.G. Constructive Approzimation. Berlin; Heidelberg; New York: Springer-Verlag,
1993, 452 p. ISBN: 978-3-540-50627-0 .

. Jetter K., Stockler J., Ward J.D. Error Estimates for Scattered Data Interpolation. Math. Comp., 1999,

vol. 68, pp. 733-747. doi: 10.1090/S0025-5718-99-01080-7 .

John F. Extremum problems with inequalities as subsidiary conditions. Courant Anniversary Volume,
N Y: Interscience, 1948, pp. 187-204.

Kro6 A. On optimal polynomial meshes. J. Approx. Theory, 2011, vol. 163, pp. 1107-1124.
doi: 10.1016/j.jat.2011.03.007 .

Kro6 A. On the existence of optimal meshes in every convex domain on the plane. J. Approx. Theory,
2019, vol. 238, pp. 26-37. doi: 10.1016/j.jat.2017.02.004 .

Lubinsky D. Marcinkiewicz—Zygmund Inequalities: Methods and Results. In: Recent Progress in
Inequalities (ed. G.V. Milovanovic et al.). Dordrecht: Kluwer Acad. Publ., 1998, pp. 213-240.
doi: 10.1007/978-94-015-9086-0 12.

Marcinkiewicz J., Zygmund A. Mean values of trigonometric polynomials. Fund. Math., 1937, vol. 28,
pp. 131-166.

Mastroianni G., Totik V. Weighted polynomial inequalities with doubling and A., weights. Constr.
Approz., 2000, vol. 16, pp. 37-71. doi: 10.1007 /3003659910002 .

Piazzon F., Vianello M. Markov inequalities, Dubiner distance, norming meshes and polynomial
optimization on convex bodies. Optimization Letters, 2019, vol. 13, pp. 1325-1343.

doi: 10.1007/s11590-018-1377-0.

Received January 22, 2020
Revised October 6, 2020
Accepted October 12, 2020

Andras Krod, Alfréd Rényi Institute of Mathematics and Budapest University of Technology and
Economics, Budapest, Hungary, e-mail: kroo.andras@renyi.hu.

Cite this article as: A. Kro6. On a refinement of Marcinkiewicz—Zygmund type inequalities, Trudy
Instituta Matematiki i Mekhaniki UrO RAN, 2020, vol. 26, no. 4, pp. 196-209 .



