Automorphisms of a Distance-Regular Graph with Intersection Array $\{30,22,9 ; 1,3,20\}$

K. S. Efimov ${ }^{1, *}$ and A. A. Makhnev ${ }^{2,1, * *}$
Received March 2, 2020; revised May 26, 2020; accepted June 15, 2020

Abstract

A distance-regular graph Γ of diameter 3 is called a Shilla graph if it has the second eigenvalue $\theta_{1}=a_{3}$. In this case $a=a_{3}$ divides k and we set $b=b(\Gamma)=k / a$. Koolen and Park obtained the list of intersection arrays for Shilla graphs with $b=3$. There exist graphs with intersection arrays $\{12,10,5 ; 1,1,8\}$ and $\{12,10,3 ; 1,3,8\}$. The nonexistence of graphs with intersection arrays $\{12,10,2 ; 1,2,8\},\{27,20,10 ; 1,2,18\},\{42,30,12 ; 1,6,28\}$, and $\{105,72,24 ; 1,12,70\}$ was proved earlier. In this paper, we study the automorphisms of a distance-regular graph Γ with intersection array $\{30,22,9 ; 1,3,20\}$, which is a Shilla graph with $b=3$. Assume that a is a vertex of $\Gamma, G=\operatorname{Aut}(\Gamma)$ is a nonsolvable group, $\bar{G}=G / S(G)$, and \bar{T} is the socle of \bar{G}. Then $\bar{T} \cong L_{2}(7), A_{7}, A_{8}$, or $U_{3}(5)$. If Γ is arc-transitive, then T is an extension of an irreducible $F_{2} U_{3}(5)$-module V by $U_{3}(5)$ and the dimension of V over F_{3} is 20, $28,56,104$, or 288.

Keywords: Shilla graph, graph automorphism.
DOI: 10.1134/S0081543821060080

[^0]
[^0]: ${ }^{1}$ Ural Federal University, Yekaterinburg, 620000 Russia
 ${ }^{2}$ Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia
 e-mail: *konstantin.s.efimov@gmail.com, ${ }^{* *}$ makhnev@imm.uran.ru

