Tom 26 № 3

УДК 512.556

АВТОМОРФИЗМЫ ПОЛУКОЛЬЦА МНОГОЧЛЕНОВ $\mathbb{R}_+^{\vee}[x]$ И РЕШЕТОК ЕГО ПОДАЛГЕБР

В. В. Сидоров

Коммутативное полукольцо с нулем и единицей, отличное от кольца, каждый ненулевой элемент которого обратим, называется полуполем с нулем. Пусть \mathbb{R}_+^\vee — полуполе с нулем неотрицательных действительных чисел с операциями тах-сложения и умножения. Для произвольных положительных чисел a и s обозначим через $\psi_{a,s}$ автоморфизм полукольца многочленов $\mathbb{R}_+^\vee[x]$, действующий по правилу $\psi_{a,s}\colon a_0\vee a_1x\vee\ldots\vee a_nx^n\mapsto a_0^s\vee a_1^s(ax)\vee\ldots\vee a_n^s(ax)^n$. Доказано, что автоморфизмы полукольца многочленов $\mathbb{R}_+^\vee[x]$ — это в точности автоморфизмы $\psi_{a,s}$. Кольцо C(X) непрерывных \mathbb{R} -значных функций, заданных на произвольном топологическом пространстве X, является алгеброй над полем \mathbb{R} действительных чисел. Подалгеброй в C(X) будет любое его непустое подмножество, замкнутое относительно сложения и умножения функций и выдерживающее умножение на константы из \mathbb{R} . По аналогии непустое подмножество $A\subseteq \mathbb{R}_+^\vee[x]$ назовем подалгеброй полукольца $\mathbb{R}_+^\vee[x]$, если $f\vee g$, fg, $rf\in A$ для всех $f,g\in A$ и $r\in \mathbb{R}_+^\vee$. Доказано, что произвольный автоморфизм решетки подалгебр полукольца $\mathbb{R}_+^\vee[x]$ индуцируется некоторым автоморфизмом полукольца $\mathbb{R}_+^\vee[x]$. Аналогичный результат верен для решетки подалгебр с единицей полукольца $\mathbb{R}_+^\vee[x]$. Применяется техника однопорожденных подалгебр.

Ключевые слова: полукольцо многочленов, решетка подалгебр, автоморфизм, тах-сложение.

V. V. Sidorov. Automorphisms of the semiring of polynomials $\mathbb{R}_+^{\vee}[x]$ and lattices of its subalgebras.

A commutative semiring with zero and unity different from a ring where each nonzero element is invertible is called a semifield with zero. Let \mathbb{R}_+^\vee be the semifield with zero of nonnegative real numbers with operations of max-addition and multiplication. For any positive real numbers a and s, denote by $\psi_{a,s}$ the automorphism of the semiring of polynomials $\mathbb{R}_+^\vee[x]$ defined by the rule $\psi_{a,s}\colon a_0\vee a_1x\vee\ldots\vee a_nx^n\mapsto a_0^s\vee a_1^s(ax)\vee\ldots\vee a_n^s(ax)^n$. It is proved that the automorphisms of the semiring $\mathbb{R}_+^\vee[x]$ are exactly the automorphisms $\psi_{a,s}$. The ring C(X) of continuous \mathbb{R} -valued functions defined on an arbitrary topological space X is an algebra over the field \mathbb{R} of real numbers. A subalgebra of C(X) is any nonempty subset closed under addition and multiplication of functions and under multiplication by constants from \mathbb{R} . Similarly, we call a nonempty subset $A\subseteq \mathbb{R}_+^\vee[x]$ a subalgebra of $\mathbb{R}_+^\vee[x]$ is induced by some automorphism of $\mathbb{R}_+^\vee[x]$. The same result also holds for the lattice of subalgebras of $\mathbb{R}_+^\vee[x]$ is induced by some automorphism of $\mathbb{R}_+^\vee[x]$. The same result also holds for the lattice of subalgebras with unity of the semiring $\mathbb{R}_+^\vee[x]$. The technique of one-generated subalgebras is applied.

Keywords: semiring of polynomials, lattice of subalgebras, automorphism, max-addition.

MSC: 06B05, 16S60, 54H99

DOI: 10.21538/0134-4889-2020-26-3-171-186

1. Введение

Исходные понятия. Полукольцом называется алгебраическая структура $\langle S, +, \cdot \rangle$, где $\langle S, + \rangle$ — коммутативная полугруппа, $\langle S, \cdot \rangle$ — полугруппа и умножение дистрибутивно относительно сложения. Если существуют нейтральные элементы по сложению и умножению, то они называются *нулем* и *единицей* и обозначаются через 0 и 1. При наличии нуля дополнительно требуется, чтобы $0 \cdot a = a \cdot 0 = 0$ для всех $a \in S$. Полукольцо S с нулем и единицей, отличное от кольца, называется *полуполем* c нулем, если $\langle S \setminus \{0\}, \cdot \rangle$ — коммутативная группа.

Множества \mathbb{R}_+ неотрицательных действительных чисел и многочленов $\mathbb{R}_+[x]$ с обычными операциями сложения и умножения образуют полуполе с нулем и полукольцо соответственно.

Для произвольных $a,b \in \mathbb{R}$ положим $a \lor b = \max\{a,b\}$. Заменив в \mathbb{R}_+ и $\mathbb{R}_+[x]$ обычное сложение на тах-сложение \lor , получим полуполе с нулем \mathbb{R}_+^{\lor} и полукольцо многочленов $\mathbb{R}_+^{\lor}[x]$.

Множество непрерывных \mathbb{R}_+^{\vee} -значных функций, заданных на произвольном топологическом пространстве X, с поточечными операциями тах-сложения и умножения функций образует полукольцо, которое обозначается через $C^{\vee}(X)$. Кольцо C(X) непрерывных \mathbb{R} -значных функций на X является алгеброй над полем \mathbb{R} действительных чисел. Подалгеброй кольца C(X) будет любое его непустое подмножество, замкнутое относительно сложения и умножения функций и выдерживающее умножение на константы из \mathbb{R} . По аналогии непустое подмножество A полукольца $C^{\vee}(X)$ или $\mathbb{R}_+^{\vee}[x]$ назовем его *подалгеброй*, если $f \vee g$, fg, $rf \in A$ для всех $f,g \in A$ и $r \in \mathbb{R}_+^{\vee}$. Таким образом, мы будем употреблять термин «подалгебра» в более широком смысле, нежели кольцо, одновременно являющееся векторным пространством.

Важнейшим примером подалгебры служит наименьшая подалгебра, которая содержит произвольный элемент f. Она называется однопорожденной и обозначается через $\langle f \rangle$. Наименьшая подалгебра с единицей, которая содержит элемент f, называется однопорожденной подалгеброй c единицей и обозначается через [f].

Для произвольной подалгебры A обозначим через $\mathbb{A}(A)$ решетку подалгебр, включенных в A и упорядоченных по включению (под \subset будем понимать строгое включение). Если $1 \in A$, то через $\mathbb{A}_1(A)$ обозначим решетку подалгебр c единицей, включенных s A.

З а м е ч а н и е 1. Легко видеть, что точная нижняя грань произвольного непустого семейства подалгебр $\{A_i\}_{i\in I}$ равна их пересечению $\bigcap_{i\in I}A_i$, а точная верхняя грань состоит из конечных тах-сумм произведений вида $f_1\cdot\ldots\cdot f_n$, где $f_1,\ldots,f_n\in\bigcup_{i\in I}A_i,\ n\in\mathbb{N}$. Отсюда, в частности, получаем, что решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ — полные, т. е. любое непустое подмножество их элементов имеет точные верхнюю и нижнюю грани.

Мотивировка и основные результаты. В теории колец C(X) интересен вопрос о том, насколько топологическое пространство X или отдельные его свойства определяются теми или иными алгебраическими свойствами кольца C(X) и других связанных с ним алгебраических систем. Сюда же относится задача определяемости топологических пространств.

Пусть каждому топологическому пространству X поставлена в соответствие каким-либо образом алгебраическая структура A(X). Это соответствие подразумевается инвариантным, т. е. гомеоморфным пространствам соответствуют изоморфные структуры. Ситуацию, когда верно обратное, описывает следующее определение. Говорят, что топологическое пространство $X \in K$ определяется (однозначно с точностью до гомеоморфизма) в классе K топологических пространств алгебраической структурой A(X), если для произвольного топологического пространства $Y \in K$ изоморфизм $A(Y) \cong A(X)$ влечет гомеоморфизм $Y \approx X$. Понятие определяемости алгебраической структуры A(X) в классе K топологических пространств производной алгебраической структурой A'(X) вводится аналогичным образом.

В 1939 г. И. М. Гельфанд и А. Н. Колмогоров доказали одну из первых теорем определяемости топологических пространств (см. [1, теорема 2]): произвольный компакт X определяется кольцом C(X). Этот результат послужил образцом для различных обобщений и углублений как в сторону расширения класса определяемых пространств с класса компактов, так и в сторону ослабления структуры C(X) и привлечения новых объектов A(X). Так, в 1948 г. Э. Хьюитт установил (см. [2, теорема 57]) определяемость кольцом C(X) произвольного действительного-компактного (называемого часто хьюиттовским) пространства X, а в 1997 г. Е. М. Вечтомов доказал (см. [3, теорема 1]) определяемость X решеткой A(C(X)) подалгебр кольца C(X), что является усилением результата Хьюитта, так как изоморфизм колец C(X) и C(Y) влечет изоморфизм решеток их подалгебр. Отсюда следует (см. [3, теорема 2]), что для любого топологического пространства X кольцо C(X) определяется решеткой A(C(X)).

При исследовании полуколец $C^{\vee}(X)$ большое внимание уделяется методам и результатам, которые удается перенести из теории колец C(X), в том числе связанным с определяемостью. В 2019 г. мы перенесли (см. [4, теоремы 1 и 2]) перечисленные выше результаты на случай полукольца $C^{\vee}(X)$ и решеток его подалгебр $\mathbb{A}(C^{\vee}(X))$ и $\mathbb{A}_1(C^{\vee}(X))$. В частности, мы доказали, что для любых топологических пространств X и Y изоморфизм решеток $\mathbb{A}(C^{\vee}(X))$ и $\mathbb{A}(C^{\vee}(Y))$ или их подрешеток $\mathbb{A}_1(C^{\vee}(X))$ и $\mathbb{A}_1(C^{\vee}(Y))$ влечет изоморфизм полуколец $C^{\vee}(X)$ и $C^{\vee}(Y)$.

Ключевую роль в рассуждениях играет техника однопорожденных подалгебр, суть которой заключается в том, что многие свойства произвольной подалгебры удается описать в терминах решеточных свойств однопорожденных подалгебр, точной верхней гранью которых она является. В основе данной техники лежит следующий факт (см. [4, предложение 3]): однопорожденные подалгебры полукольца $C^{\vee}(X)$ описываются в терминах свойств решетки $\mathbb{A}(C^{\vee}(X))$. Поэтому если α — изоморфизм решеток $\mathbb{A}(C^{\vee}(X))$ и $\mathbb{A}(C^{\vee}(Y))$, то образом произвольной однопорожденной подалгебры $\langle f \rangle$ служит некоторая подалгебра $\langle g \rangle$. Ясно, что ограничение α на решетку $\mathbb{A}(\langle f \rangle)$ подалгебр, включенных в $\langle f \rangle$, будет изоморфизмом решеток $\mathbb{A}(\langle f \rangle)$ и $\mathbb{A}(\langle g \rangle)$. Факт изоморфности этих решеток накладывает ограничение на сами подалгебры $\langle f \rangle$ и $\langle g \rangle$. Это наблюдение может быть использовано при описании изоморфизмов α , так как они однозначно задаются образами однопорожденных подалгебр. Приходим к задаче описания изоморфизмов решеток $\mathbb{A}(\langle f \rangle)$ и $\mathbb{A}(\langle g \rangle)$, решение которой естественно начать с описания автоморфизмов решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ подалгебр полукольца многочленов $\mathbb{R}_+^{\vee}[x]$ от формальной переменной x, так как функции подалгебры $\langle f \rangle$ записываются многочленами полукольца $\mathbb{R}_+^{\vee}[f]$. Аналогично задача описания изоморфизмов решеток $\mathbb{A}_1(C^{\vee}(X))$ и $\mathbb{A}_1(C^{\vee}(Y))$ приводит к задаче описания автоморфизмов решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Эти задачи интересны и вне описанного нами контекста.

Цель настоящей работы — описать автоморфизмы полукольца многочленов $\mathbb{R}_+^{\vee}[x]$, а также решеток его подалгебр $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$.

Ранее в работе [5] было установлено, что автоморфизмы решеток подалгебр $\mathbb{A}(\mathbb{R}_+[x])$ и $\mathbb{A}_1(\mathbb{R}_+[x])$ полукольца многочленов $\mathbb{R}_+[x]$ индуцируются автоморфизмами самого полукольца, которые, в свою очередь, получаются заменами вида $x\mapsto ax,\ a>0$. Поскольку операции обычного сложения и тах-сложения многочленов существенно различаются, случай полукольца многочленов $\mathbb{R}_+^{\vee}[x]$ разбирается принципиально иным способом.

Приступим к формулировке основных результатов работы.

Легко видеть, что для любых положительных чисел a и s правило $\psi_{a,s}$, где

$$\psi_{a,s} \colon a_0 \vee a_1 x \vee \ldots \vee a_n x^n \mapsto a_0^s \vee a_1^s (ax) \vee \ldots \vee a_n^s (ax)^n$$

задает автоморфизм полукольца $\mathbb{R}_{+}^{\vee}[x]$. Более того, верна следующая теорема.

Теорема 1. Автоморфизмы полукольца $\mathbb{R}_{+}^{\vee}[x]$ — это в точности автоморфизмы $\psi_{a.s.}$

Выясним, как связаны между собой автоморфизмы полукольца $\mathbb{R}_+^{\vee}[x]$ и автоморфизмы решеток его подалгебр $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$.

Лемма 1. Произвольный автоморфизм $\psi_{a,s}$ полукольца $\mathbb{R}_+^{\vee}[x]$ индуцирует автоморфизмы решеток его подалгебр $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$.

Д о к а з а т е л ь с т в о. Для произвольных $f, g, r \in \mathbb{R}_+^{\vee}[x]$ и $A, B \subseteq \mathbb{R}_+^{\vee}[x]$ обозначим через f', g', r' и A', B' соответственно их образы при автоморфизме $\psi_{a,s}$. Заметим, что условия $r \in \mathbb{R}_+^{\vee}$ и $r' \in \mathbb{R}_+^{\vee}$ равносильны, так как $\psi_{a,s}(\mathbb{R}_+^{\vee}) = \mathbb{R}_+^{\vee}$. Поэтому

$$r'f' \in A'$$
 для любых $f' \in A', r' \in \mathbb{R}_+^{\vee} \Longleftrightarrow rf' \in A'$ для любых $f' \in A, r \in \mathbb{R}_+^{\vee}$.

Отсюда и из того, что $\psi_{a,s}$ — автоморфизм полукольца $\mathbb{R}_+^{\vee}[x]$, получаем

$$f \lor g, fg, rf \in A$$
 для всех $f, g \in A, r \in \mathbb{R}_+^{\lor} \Longleftrightarrow f' \lor g', f'g', rf' \in A'$ для всех $f', g' \in A', r \in \mathbb{R}_+^{\lor}$.

Поэтому подмножество A полукольца $\mathbb{R}_+^{\vee}[x]$ является его подалгеброй тогда и только тогда, когда подалгеброй служит его образ A'. Кроме того, включения $A \subset B$ и $A' \subset B'$ равносильны, так как $\psi_{a,s}$ является преобразованием полукольца $\mathbb{R}_+^{\vee}[x]$. Следовательно, автоморфизм $\psi_{a,s}$ полукольца $\mathbb{R}_+^{\vee}[x]$ индуцирует автоморфизм решетки его подалгебр $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$, а значит, и ее подрешетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$, поскольку $\psi_{a,s}(1) = 1$.

Итак, произвольный автоморфизм $\psi_{a,s}$ полукольца индуцирует автоморфизмы решеток его подалгебр $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$, которые обозначим через $\alpha_{\psi_{a,s}}$ и $\alpha_{1,\psi_{a,s}}$ соответственно.

Следующая теорема является центральным результатом работы.

Теорема 2. Автоморфизмы решеток подалгебр $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ — это в точности автоморфизмы $\alpha_{\psi_{a,s}}$ и $\alpha_{1,\psi_{a,s}}$ соответственно.

Перейдем к доказательству теорем 1 и 2.

2. Доказательство теоремы 1

Произвольное соответствие $\psi_{a,s}$ задает автоморфизм полукольца $\mathbb{R}_+^{\vee}[x]$. Покажем, что для любого автоморфизма ψ полукольца $\mathbb{R}_+^{\vee}[x]$ найдутся такие a,s>0, что $\psi=\psi_{a,s}$.

Докажем, что существует такое s > 0, что

$$\psi(a) = a^s$$
 для всех $a \in \mathbb{R}_+^{\vee}$. (2.1)

Заметим, что $\psi(0)\psi(f)=\psi(0\cdot f)=\psi(0)$ и $\psi(1)\psi(f)=\psi(1\cdot f)=\psi(f)$ для всех $f\in\mathbb{R}_+^\vee[x]$, Отсюда $\psi(0)=0$ и $\psi(1)=1$. Следовательно, $\psi(a)\psi(1/a)=\psi(a\cdot 1/a)=\psi(1)=1$ для любого ненулевого $a\in\mathbb{R}_+^\vee$. Поэтому $\psi(a)\in\mathbb{R}_+^\vee$. Аналогично $\psi^{-1}(a)\in\mathbb{R}_+^\vee$. Значит, $\psi(\mathbb{R}_+^\vee)=\mathbb{R}_+^\vee$.

Далее, автоморфизм ψ сохраняет порядок на \mathbb{R}_+^{\vee} , так как

$$a \ge b \Longleftrightarrow a \lor b = a \Longleftrightarrow \psi(a) \lor \psi(b) = \psi(a) \Longleftrightarrow \psi(a) \ge \psi(b)$$
 для любых $a, b \in \mathbb{R}_+^{\lor}$. (2.2)

Кроме того, $\psi(0)=0$ и $\psi(1)=1$. Следовательно, $\psi([0,1])=[0,1]$, где [0,1]— единичный отрезок.

Выберем произвольное $c,\ 1>c>0$. Тогда $1>\psi(c)>0$, т. е. $\psi(c)=c^s$ для некоторого s>0. Заметим: для любых $i\in\mathbb{N}$ и $a,\ 1>a>0$, найдется такое $n_i\in\mathbb{N}_0$, что $c^{1+n_i}< a^i\leq c^{n_i}$ или (это равносильно) $0\leq\log_c a-n_i/i<1/i$. Обозначим через $n_i(c,a)$ показатель n_i . Тогда

$$\lim_{i \to +\infty} \frac{n_i(c, a)}{i} = \log_c a. \tag{2.3}$$

Из (2.2), (2.3) и $\psi(c) = c^s$ находим, что $\psi(a) = a^s$, так как

$$\log_c a = \lim_{i \to +\infty} \frac{n_i(c, a)}{i} = \lim_{i \to +\infty} \frac{n_i(\psi(c), \psi(a))}{i} = \lim_{i \to +\infty} \frac{n_i(c^s, \psi(a))}{i} = \log_{c^s} \psi(a).$$

Наконец, если a>1, то 1>1/a>0. Поэтому $\psi(1/a)=(1/a)^s$. Отсюда и из $\psi(1)=1$ находим, что $\psi(a)/a^s=\psi(a)\psi(1/a)=\psi(1)=1$. Значит, $\psi(a)=a^s$.

Поскольку $\psi(\mathbb{R}_+^{\vee}) = \mathbb{R}_+^{\vee}$, $\deg \psi(x) \geq 1$. Если $\deg \psi(x) \geq 2$ или $\psi(x)$ — многочлен со свободным членом, то $\deg \psi(f) \geq 2$ или $\psi(f)$ — многочлен со свободным членом для всех $f \in \mathbb{R}_+^{\vee}[x]$, $\deg f \geq 1$; противоречие с сюръективностью ψ . Следовательно, $\psi(x) = ax$ для некоторого a > 0. Отсюда и из (2.1) получаем, что для любого многочлена $f = a_0 \vee a_1 x \vee \ldots \vee a_n x^n \in \mathbb{R}_+^{\vee}[x]$

$$\psi(f) = \psi(a_0) \vee \psi(a_1)\psi(x) \vee \ldots \vee \psi(a_n)\psi(x^n) = a_0^s \vee a_1^s(ax) \vee \ldots \vee a_n^s(ax)^n.$$

Таким образом, $\psi = \psi_{a,s}$.

3. Доказательство теоремы 2: вспомогательные результаты

В данный раздел мы вынесли все необходимые для доказательства теоремы 2 результаты.

Однопорожденные подалгебры. Все элементы решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ являются подалгебрами с единицей. Поэтому при работе в решетке $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ однопорожденные подалгебры [f] с единицей для краткости будем называть однопорожденными. Многочлены подалгебр $\langle f \rangle$ и [f]

будем записывать по возрастающим степеням f, а их коэффициенты обозначать символами a,b,c,d,e и r (часто с индексами). Легко видеть, что

$$\langle f \rangle = \{ a_1 f \vee \ldots \vee a_n f^n \colon a_1, \ldots, a_n \in \mathbb{R}_+^{\vee}, a_n > 0, n \in \mathbb{N} \},$$
$$[f] = \{ a_0 \vee a_1 f \vee \ldots \vee a_n f^n \colon a_0, a_1, \ldots, a_n \in \mathbb{R}_+^{\vee}, a_n > 0, n \in \mathbb{N}_0 \} = \langle f \rangle \vee \mathbb{R}_+^{\vee}.$$

Будем говорить, что в решетке имеется *решеточная характеризация некоторого свойства*, если данное свойство можно описать в терминах этой решетки.

 Π р и м е р. Подалгебра [x] имеет решеточную характеризацию в решетках $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$, а именно подалгебра [x] — единица этих решеток.

Элемент решетки с нулем называется *атомом*, если меньше его лишь нулевой элемент. Дадим решеточные характеризации подалгебры \mathbb{R}_+^{\vee} в решетках $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$.

Лемма 2. $\mathbb{R}_+^{\vee} - e \partial u$ нственный атом решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и нуль решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$.

Доказательство. Подалгебра \mathbb{R}_+^{\vee} — нуль решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ и атом решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$, так как для любой подалгебры A условия $\mathbb{R}_+^{\vee} \subseteq A$ и $\mathbb{R}_+^{\vee} \cap A \neq \{0\}$ равносильны.

Далее, пусть A — атом решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$, т. е. A — минимальная подалгебра. Выберем ненулевой многочлен $f \in A$. Тогда $\langle f^2 \rangle \subseteq A$, т. е. $A = \langle f^2 \rangle$ в силу минимальности A. Поэтому $f \in \langle f^2 \rangle$ и многочлен f имеет вид $a_1 f^2 \vee \ldots \vee a_n (f^2)^n$. Отсюда $1 = a_1 f \vee \ldots \vee a_n f^{2n-1} \in A$, т. е. $1 \in A$, так как $f \in A$. В этом случае $\mathbb{R}_+^{\vee} \subseteq A$. Следовательно, $A = \mathbb{R}_+^{\vee}$ в силу минимальности A. Значит, подалгебра \mathbb{R}_+^{\vee} — единственный атом решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$.

Элемент A полной решетки (см. замечание 1) называется компактным, если для любого непустого семейства $\{A_i\}_{i\in I}$ ее элементов из $A\leq\bigvee_{i\in I}A_i$ получаем $A\leq\bigvee_{i\in J}A_i$ для некоторого конечного подмножества $J\subseteq I$. Элемент A решетки называется \vee -неразложимым, если из $A=B\vee C$ имеем A=B или A=C.

Дадим решеточную характеризацию подалгебр $\langle f \rangle$ и [f].

Лемма 3. Подалгебры $\langle f \rangle$ и [f] — это в точности \vee -неразложимые компактные элементы решеток $\mathbb{A}(\mathbb{R}^{\downarrow}_{+}[x])$ и $\mathbb{A}_{1}(\mathbb{R}^{\downarrow}_{+}[x])$ соответственно.

Докажем решеточную характеризацию подалгебр [f].

Пусть подалгебра [f] такая, что $[f] \subseteq \bigvee_{i \in I} A_i$ для некоторого семейства подалгебр $\{A_i\}_{i \in I}$ с единицей. Тогда найдутся такие подалгебры $A_{i_1}, \ldots, A_{i_m} \in \{A_i\}_{i \in I}, \ m \in \mathbb{N}$, и многочлены $f_1, \ldots, f_n \in A_{i_1} \cup \ldots \cup A_{i_m}, \ n \in \mathbb{N}$, что $f \in \mathbb{R}_+^{\vee}[f_1, \ldots, f_n]$. Значит, $[f] \subseteq A_{i_1} \vee \ldots \vee A_{i_m}$, т.е. подалгебра [f] компактна.

Допустим, $[f] = A \lor B$ для некоторых подалгебр $A, B \subset [f]$ с единицей. Поскольку $f \in A \lor B$, $f = u_1 v_1 \lor \ldots \lor u_n v_n$ для некоторых многочленов $u_1, \ldots, u_n \in A \cap \mathbb{R}_+^{\lor}[f]$ и $v_1, \ldots, v_n \in B \cap \mathbb{R}_+^{\lor}[f]$. Тогда $f = u_i v_i$ для некоторого $i \in \{1, \ldots, n\}$. Отсюда $f = a u_i$ или $f = a v_i$ для некоторого a > 0, т.е. $[f] \subseteq A$ или $[f] \subseteq B$; противоречие с $A, B \subset [f]$. Следовательно, подалгебра [f] \lor -неразложима.

Обратно, пусть подалгебра $A-\vee$ -неразложимый компактный элемент решетки $\mathbb{A}_1(\mathbb{R}_+^\vee[x])$. Поскольку A компактна и $A=\bigvee_{f\in A}[f],\ A=[f_1]\vee\ldots\vee [f_n]$ для некоторых многочленов $f_1,\ldots,f_n\in A,\ n\in\mathbb{N}$. Не умаляя общности, будем считать, что n принимает наименьшее возможное значение. Если $n\geq 2$, то $A=[f_1]\vee([f_2]\vee\ldots\vee [f_n])$. Поскольку $A-\vee$ -неразложимый элемент, $A=[f_1]$ или $A=[f_2]\vee\ldots\vee [f_n]$; противоречие с выбором n. Значит, n=1, т. е. A=[f] для некоторого многочлена $f\in A$.

Решеточная характеризация подалгебр $\langle f \rangle$ доказывается аналогично.

З а м е ч а н и е 2. Для устранения громоздкости текста работы в записи решеточной характеризации некоторых свойств будем использовать условия, которые сформулированы не в терминах решетки, но их решеточная характеризация была получена ранее. Без специальных ссылок на леммы 2, 3 и пример будем использовать существование в решетках $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и

 $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ решеточных характеризаций подалгебр [x], \mathbb{R}_+^{\vee} и однопорожденных подалгебр. Обороты "существует решеточная характеризация" и "решеточная характеризация" часто будем сокращать до "с. р. х." и "р. х." соответственно.

Решим вопрос о равенстве однопорожденных подалгебр.

Лемма 4. Для любых многочленов $f,g \in \mathbb{R}_+^{\vee}[x]$ справедливы следующие утверждения:

- 1) $\langle f \rangle = \langle g \rangle$ тогда и только тогда, когда f = g = 0 или f = rg для некоторого r > 0;
- 2) [f] = [g] тогда и только тогда, когда $f, g \in \mathbb{R}_+^{\vee}$ или f = rg для некоторого r > 0.

Д о к а з а т е л ь с т в о. Если подалгебры $\langle f \rangle$ и $\langle g \rangle$ — нулевые, то f=g=0. Пусть подалгебры $\langle f \rangle$ и $\langle g \rangle$ равны и ненулевые. Тогда f=u(g) и g=v(f) для некоторых многочленов $u \in \mathbb{R}_+^{\vee}[g]$ и $v \in \mathbb{R}_+^{\vee}[f]$ не ниже первой степени. Отсюда $f=(u \circ v)(f)$, т. е. u и v — одночлены первой степени. Значит, f=rg для некоторого r>0. Обратное утверждение очевидно.

Утверждение 2) доказывается аналогично.

З а м е ч а н и е 3. До конца раздела будем работать в решетке $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Подалгебры с единицей для краткости будем называть подалгебрами.

Лемма 5. Для любой подалгебры $[f] \neq \mathbb{R}_+^{\vee}$ и любых $r_1, r_2 \in \mathbb{R}_+^{\vee}$ имеем

$$[r_2 \lor f] \subset [r_1 \lor f] \iff r_2 > r_1.$$

Доказательство. Если $r_2 > r_1$, то $r_2 \lor f = r_2 \lor (r_1 \lor f) \in [r_1 \lor f]$. Поэтому $[r_2 \lor f] \subseteq [r_1 \lor f]$. Кроме того, $[r_2 \lor f] \neq [r_1 \lor f]$ по лемме 4. Значит, $[r_2 \lor f] \subset [r_1 \lor f]$. Необходимость следует из достаточности.

Характеристики Supp f, mindeg f, deg f **и** lp f. Для произвольного многочлена

$$f = a_{i_1} x^{i_1} \vee \ldots \vee a_{i_n} x^{i_n}, \ a_{i_1}, \ldots, a_{i_n} > 0, \ i_n > \ldots > i_1 \ge 0, \ n \in \mathbb{N},$$

числа i_1, i_n, n и множество $\{i_1, \dots, i_n\}$ обозначим через mindeg f, $\deg f$, $\lg f$ и $\operatorname{Supp} f$ соответственно. Для f = 0 положим $\operatorname{Supp} f = \{0\}$, $\operatorname{mindeg} f = \deg f = 0$ и $\lg f = 1$. Например, если $f = 1 \vee x^3$, то $\operatorname{Supp} f = \{0,3\}$, $\operatorname{mindeg} f = 0$, $\deg f = 3$ и $\lg f = 2$.

З а м е ч а н и е 4. В силу леммы 4 характеристики mindeg f, deg f, lp f и Supp f не зависят от выбора многочлена f, задающего подалгебру [f].

Дадим р. х. mindeg f, deg f, lp f и Supp f для произвольной подалгебры [f]. Попутно получим и другие необходимые для доказательства теоремы 2 утверждения.

Лемма 6. Для произвольных подалгебр [f] u [g], ϵde $[f] \neq \mathbb{R}_+^{\vee}$ u $[f] \subset [g]$, справедливы следующие утверждения:

- 1) ecnu mindeg g = 0, mo mindeg f = 0;
- 2) $\deg f \ge \deg g$;
- 3) $ecnu \text{ mindeg } f \geq 1, mo \deg f \geq 2 \deg g.$

Доказательство. Поскольку $[f] \neq \mathbb{R}_+^{\vee}$ и $[f] \subset [g]$, многочлен f имеет вид

$$f = a_0 \vee a_1 q \vee ... \vee a_n q^n, \ a_n > 0, \ n > 1.$$

Отсюда $\deg f \geq \deg g$. Кроме того, если mindeg g=0, то mindeg $a_ng^n=0$. Значит, mindeg f=0. Далее, $[g] \neq \mathbb{R}_+^\vee$, так как $[f] \neq \mathbb{R}_+^\vee$ и $[f] \subset [g]$. Следовательно, $\deg g \geq 1$. Если mindeg $f \geq 1$, то $a_0=0$ и, как было доказано ранее, mindeg $g \geq 1$. Кроме того, $n \geq 2$, так как в противном случае, [f]=[g]. Значит, $\deg f=\deg a_ng^n=n\deg g \geq 2\deg g$.

Доказательство следующей леммы опирается на лемму 6.

Лемма 7. Для любой подалгебры [f] c. p. x равенства mindeg f = 0.

Доказательство. Если $[f] = \mathbb{R}_+^{\vee}$, то mindeg f = 0. Пусть $[f] \neq \mathbb{R}_+^{\vee}$. Докажем, что mindeg f = 0 тогда и только тогда, когда

$$[f] \subset \ldots \subset [f_{i+1}] \subset [f_i] \subset \ldots \subset [f_1]$$
 для некоторого семейства подалгебр $\{[f_i]\}_{i \in \mathbb{N}}$. (3.1)

Допустим, mindeg f=0. Поскольку $[f] \neq \mathbb{R}_+^{\vee}$, многочлен f имеет вид

$$f = a_0 \lor a_1 x \lor \dots \lor a_n x^n, \ a_0, a_n > 0, \ n \ge 1.$$

Положим $f_i = ((1-1/i)a_0) \lor a_1 x \lor ... \lor a_n x^n$, $i \in \mathbb{N}$. Тогда по лемме 5 условие (3.1) выполняется. Обратно, пусть условие (3.1) выполняется. Если mindeg $f_i \ge 1$ для всех $i \in \mathbb{N}$, то по лемме 6

$$\deg f \ge \deg f_{i+1}, \ \deg f_{i+1} \ge 2 \deg f_i, \ \deg f_i \ge 2 \deg f_{i-1}, \dots, \ \deg f_2 \ge 2 \deg f_1 \ge 2.$$

Отсюда $\deg f \geq 2^{i-1}$ для всех $i \in \mathbb{N}$; противоречие. Следовательно, mindeg $f_i = 0$ для некоторого $i \in \mathbb{N}$. Значит, mindeg f = 0 по лемме 6, так как $[f] \subset [f_i]$.

Лемма 8. *C. p. x. подалгебр* $[a_0 \lor x], a_0 > 0.$

Доказательство. По лемме 7 с.р.х множества подалгебр

$$M = \{[f] \colon [f] \neq \mathbb{R}_+^{\vee}, \text{ mindeg } f = 0\}.$$

Рассмотрим подалгебру [x] — единицу решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Для любой подалгебры $[f] \in M$

$$\deg f \geq 2 \Longleftrightarrow [f] \subset [g] \subset [x]$$
 для некоторой подалгебры $[g] \notin M \cup \{\mathbb{R}_+^\vee\}.$

Действительно, пусть $[f] \in M$ и $\deg f \geq 2$. Тогда многочлен f имеет вид

$$f = a_0 \lor a_1 x \lor \ldots \lor a_n x^n, \ a_0, a_n > 0, n \ge 2.$$

Положим $g = a_1 x \vee ... \vee a_n x^n$. Тогда $[g] \notin M \cup \{\mathbb{R}_+^{\vee}\}$, так как mindeg $g \geq 1$. Кроме того, $[f] \subset [g] \subset [x]$, поскольку $f = a_0 \vee g \in [g]$, $g \in [x]$ и $[f] \neq [g] \neq [x]$ по лемме 4.

Обратно, пусть $[f] \subset [g] \subset [x]$ для некоторой подалгебры $[g] \notin M \cup \{\mathbb{R}_+^{\vee}\}$, в частности mindeg $g \geq 1$. Значит, deg $f \geq \deg g \geq 2$ по лемме 6.

Итак, с. р. х. множества подалгебр $N = \{[f] \in M : \deg f \ge 2\}$. Остается заметить, что

$$M \setminus N = \{ [a_0 \lor a_1 x] : a_0, a_1 > 0 \} = \{ [a_0 \lor x] : a_0 > 0 \}.$$

З а м е ч а н и е 5. Для любой подалгебры $[f] \subseteq \mathbb{R}_+^{\vee}[x]$ решетка $\mathbb{A}_1([f])$ является подрешеткой решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. В силу леммы 2 для любой подалгебры [f] решетка $\mathbb{A}_1([f])$ имеет р. х. в решетке $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Кроме того, если $[f] \neq \mathbb{R}_+^{\vee}$, то правило $x \mapsto f$ задает изоморфизм полуколец $\mathbb{R}_+^{\vee}[x]$ и $\mathbb{R}_+^{\vee}[f]$, который индуцирует изоморфизм решеток $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[f])$.

Из леммы 8 и замечания 5 получаем

Следствие 1. Для любой подалгебры $[f] \neq \mathbb{R}_+^{\vee}$ c. p. x. подалгебр $[a_0 \vee f], a_0 > 0$, в решетке $\mathbb{A}_1(\mathbb{R}_+^{\vee}[f])$, а значит, и в решетке $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$.

Лемма 9. Справедливы следующие утверждения:

- 1) с. р. х. подалгебр $[a_0 \vee a_1 x \vee \ldots \vee a_n x^n]$, где $a_0, a_n > 0$ и $n \ge 1$;
- 2) для любой подалгебры $[a_0 \vee a_1 x \vee ... \vee a_n x^n]$, где $a_0, a_n > 0$ и $n \ge 1$, с. р. х. подалгебры $[a_1 x \vee ... \vee a_n x^n]$.

Доказательство. 1) Искомыми являются подалгебры $[f] \neq \mathbb{R}_+^{\vee}$, mindeg f = 0, которые имеют р. х. по лемме 7.

2) Пусть дана подалгебра [f], где $f = a_0 \vee a_1 x \vee \ldots \vee a_n x^n$ и $a_0, a_n > 0, n \geq 1$. По лемме 7 с. р. х. множества подалгебр $M = \{[g]: \text{ mindeg } g \geq 1\}$. Для произвольной подалгебры $[g] \in M$ по следствию 1 с. р. х. множества подалгебр $N_{[g]} = \{[b_0 \vee g]: b_0 > 0\}$. Тогда по лемме 4

 $[f] \in N_{[g]}$ для некоторой подалгебры $[g] \in M \Longleftrightarrow$

$$a_0 \vee a_1 x \vee \ldots \vee a_n x^n = r(b_0 \vee g)$$
 для некоторых $r, b_0 > 0 \Longleftrightarrow$ $a_1 x \vee \ldots \vee a_n x^n = rg$ для некоторого $r > 0 \Longleftrightarrow [a_1 x \vee \ldots \vee a_n x^n] = [g].$

Значит, для подалгебры [f] искомой будет такая подалгебра $[g] \in M,$ что $[f] \in N_{[g]}.$

Лемма 10. Для любой подалгебры [f], mindeg $f \ge 1$, равносильны следующие условия:

- 1) $lp f \ge 2;$
- 2) для любой подалгебры $[a_0 \lor f], a_0 > 0$, существуют такие подалгебры [g] и [h], что

$$[g], [h] \neq \mathbb{R}_+^{\vee}, \text{ mindeg } g = \text{mindeg } h = 0, [r \vee f] \subseteq [g] \vee [h], [r \vee f] \not\subseteq [g], [h].$$
 (3.2)

Доказательство. Пусть $lp f \ge 2$. Многочлен f имеет вид

$$f = a_m x^m \vee ... \vee a_n x^n, \ a_m, a_n > 0, n > m \ge 1,$$

так как по условию mindeg $f \ge 1$. Для произвольного $a_0 > 0$ положим

$$g = a_0 \lor a_m x^m \lor \dots \lor \frac{a_n}{2} \cdot x^n, \quad h = a_0 \lor a_n x^n.$$

Тогда $[g], [h] \neq \mathbb{R}_+^{\vee}$, mindeg g = mindeg h = 0 и $[a_0 \vee f] \subseteq [g] \vee [h]$, так как $a_0 \vee f = g \vee h$.

Допустим, $[a_0 \lor f] \subseteq [g]$. Тогда $a_0 \lor f = b_0 \lor b_1 g$ для некоторых $b_0 \ge 0$ и $b_1 > 0$, поскольку $\deg(a_0 \lor f) = \deg g = n$. Исходя из этого $a_0 = b_0 \lor b_1 a_0$ и $a_n = (b_1 a_n)/2$, т. е. $b_1 \le 1$ и $b_1 = 2$; противоречие. Следовательно, $[r \lor f] \nsubseteq [g]$.

Аналогично если $[a_0 \lor f] \subseteq [h]$, то $a_0 \lor f = c_0 \lor c_1 g$ для некоторых $c_0 \ge 0$ и $c_1 > 0$, так как $\deg(a_0 \lor f) = \deg h = n$. Поэтому $a_m = c_1 \cdot 0 = 0$; противоречие. Следовательно, $[r \lor f] \nsubseteq [h]$.

Обратно, пусть условие 2) выполняется, но $\lg f = 1$. Поскольку mindeg $f \geq 1$, $f = a_n x^n$ для некоторых $a_n > 0$ и $n \in \mathbb{N}$. Для подалгебры $[1 \vee a_n x^n]$ рассмотрим подалгебры [g] и [h], для которых выполняется условие (3.2). Заметим, что $\lg g, \lg h \geq 2$, так как $[g], [h] \neq \mathbb{R}_+^\vee$ и mindeg $g = \min \deg h = 0$. Поэтому $\lg g^i h^j \geq 3$ для любых $i, j \in \mathbb{N}_0, i + j \geq 2$. Кроме того, $\lg(1 \vee a_n x^n) = 2$ и $[1 \vee a_n x^n] \subseteq [g] \vee [h]$. Значит, $1 \vee a_n x^n = a \vee bg \vee ch$ для некоторых $a, b, c \geq 0$, причем b, c > 0, так как $[1 \vee a_n x^n] \not\subseteq [g], [h]$ согласно (3.2). Отсюда и из $\lg g, \lg h \geq 2$ находим, что $g = b_0 \vee b_n x^n$ и $h = c_0 \vee c_n x^n$ для некоторых $b_0, b_n, c_0, c_n > 0$. Следовательно, $1 = a \vee bb_0 \vee cc_0$ и $a_n = bb_n \vee cc_n$. Не умаляя общности, будем считать, что $a_n = bb_n$.

Если $a_nb_0/b_n \le 1$, то $[1 \lor a_nx^n] \subseteq [g]$, так как $1 \lor a_nx^n = 1 \lor a_ng/b_n \in [g]$; противоречие с $[1 \lor a_nx^n] \nsubseteq [g]$. Поэтому $a_nb_0/b_n > 1$. Отсюда и из $a_n = bb_n$ находим, что $bb_0 > 1$, что противоречит $1 = a \lor bb_0 \lor cc_0$. Значит, $\lg f \ge 2$.

Лемма 11. Для любого $n \in \mathbb{N}$ с. р. х. подалгебры $[x^n]$, а значит, для любой подалгебры [f] с. р. х. условий $\operatorname{lp} f = 1$ u $\operatorname{lp} f \geq 2$.

Доказательство. По лемме 10 с.р.х. множества подалгебр

$$M = \{ [f] : [f] \neq \text{mindeg } f \geq 1, \text{lp } f = 1 \} = \{ [x^n] : n \in \mathbb{N} \}.$$

1. Дадим р. х. подалгебры $[x^2]$, а именно докажем, что для любой подалгебры $[f] \in M \setminus \{[x]\}$ равносильны следующие условия:

1.1) $[f] = [x^2];$

1.2) $[g]\subseteq [f]\vee [h]$ или $[h]\subseteq [f]\vee [g]$ для любых подалгебр $[g],[h]\in M\backslash\{[x],[f]\}.$

Пусть $[f] = [x^2]$ и $[g], [h] \in M \setminus \{[x], [f]\}$. Тогда $[g] = [x^m]$ и $[h] = [x^n]$ для некоторых $m, n \geq 3$. Если m = 2k или n = 2k, $k \in \mathbb{N}$, то $[g] \subseteq [f] \vee [h]$ или $[h] \subseteq [f] \vee [g]$, так как $[g] = [(x^2)^k]$ или $[h] = [(x^2)^k]$ соответственно.

Пусть m, n — нечетные. Если $m \geq n$, то $[g] \subseteq [f] \vee [h]$, в связи с тем что $x^m = x^n \cdot (x^2)^{(m-n)/2}$. Аналогично если $n \geq m$, то $[h] \subseteq [f] \vee [g]$, так как $x^n = x^m \cdot (x^2)^{(n-m)/2}$.

Обратно, пусть условие 1.2) выполняется, но $[f] \neq [x^2]$. Тогда $[f] = [x^m]$ для некоторого $m \geq 3$, так как $[f] \in M \setminus \{[x]\}$. Положим $[g] = [x^{m+2}]$ и $[h] = [x^{m+4}]$.

Если $[g] \subseteq [f] \vee [h]$, то $x^{m+2} = (x^m)^i (x^{m+4})^j$ для некоторых $i, j \in \mathbb{N}_0$ или, что равносильно, m+2=im+j(m+4); противоречие с $m\geq 3$. Следовательно, $[g] \nsubseteq [f] \vee [h]$. Аналогично $[h] \nsubseteq [f] \vee [g]$; противоречие с условием 1.2). Значит, $[f] = [x^2]$.

2. Дадим р. х. множества подалгебр $P = \{[x^p]: p$ — простое $\}$, а именно докажем, что для произвольной подалгебры $[x^m] \in M \setminus \{[x]\}$ показатель m— составное число тогда и только тогда, когда $[x^m] \subset [x^n]$ для некоторой подалгебры $[x^n] \in M \setminus \{[x], [x^m]\}$.

Если m=nk, где $n,k\geq 2$, то $[x^m]\subset [x^n]$, так как $[x^m]\neq [x^n]$ по лемме 4 и $x^m=(x^n)^k$.

Обратно, если $[x^m] \subset [x^n]$ для некоторой подалгебры $[x^n] \in M \setminus \{[x], [x^m]\}$, то $n \geq 2$ и $x^m = (x^n)^k$ для некоторого $k \geq 2$. Отсюда m = nk, где и $n, k \geq 2$. Значит, m— составное.

3. Для произвольных различных подалгебр $[x^{p_1}], [x^{p_2}] \in P \setminus \{[x^2]\}$ дадим р. х. неравенства $p_1 > p_2$, а именно докажем, что $p_1 > p_2$ равносильно $[x^{p_1}] \subseteq [x^{p_2}] \vee [x^2]$.

Если $[x^{p_1}] \subseteq [x^{p_2}] \vee [x^2]$, то $x^{p_1} = (x^{p_2})^i (x^2)^j$ для некоторых $i, j \in \mathbb{N}_0$. Отсюда $p_1 = ip_2 + 2j$, причем $i \geq 1$, так как p_1, p_2 — нечетные. Значит, $p_1 > p_2$.

Обратное утверждение следует из доказанного.

- 4. Из пп. 1–3 находим, что простые показатели p подалгебр $[x^p] \in P$ можно решеточно упорядочить, а значит, для любого простого p с. р. х. подалгебры $[x^p]$. Отсюда и из замечания 5 получаем, что для любой подалгебры $[f] \neq \mathbb{R}^+_+$ и любого простого p с. р. х. подалгебры $[f^p]$.
- 5. Пусть n- составное. Тогда $n=p_1\cdot\ldots\cdot p_k$ для некоторых простых $p_1,\ldots,p_k,\,k\geq 2$. Для подалгебр $[x],\,[x^{p_1}],\ldots,\,[x^{p_1\cdot\ldots\cdot p_{k-1}}]$ и показателей p_1,\ldots,p_k в силу п. 4 с. р. х. подалгебр $[x^{p_1}],\,[(x^{p_1})^{p_2}]=[x^{p_1p_2}],\ldots,\,[x^{p_1\cdot\ldots\cdot p_k}]=[x^n]$ соответственно. Значит, с. р. х. подалгебры $[x^n]$.

Лемма 12. Для любой подалгебры [f] $c. p. x. \deg f$.

Доказательство. По лемме 11 с.р.х. равенства $\lg f=1$, а также $\deg f$ в случае $\lg f=1$. Поэтому достаточно разобрать случай $\lg f\geqslant 2$.

Докажем, что для подалгебры [f], $\lg f \geqslant 2$, равносильны следующие условия:

- 1) $\deg f = n$;
- 2) n наибольшая такая степень, что для некоторой подалгебры [q]

$$[f] \subseteq [g] \vee [x^n], \ [f] \not\subseteq [g]. \tag{3.3}$$

Пусть $\deg f = n$. Поскольку $\lg f \geqslant 2$, многочлен f имеет вид

$$f = a_m x^m \vee ... \vee a_n x^n, \ a_m, a_n > 0, n > m \ge 0.$$

Положим $g = a_m x^m \vee ... \vee a_n/2 \cdot x^n$. Тогда $[f] \nsubseteq [g]$ и $[f] \subseteq [g] \vee [x^n]$, так как $f = g \vee a_n x^n$. Далее, если $[f] \subseteq [g] \vee [x^m]$ и $[f] \nsubseteq [g]$ для некоторых подалгебр [g] и $[x^m]$, $m \in \mathbb{N}$, то многочлен f имеет вид

$$f = a_{00} \lor a_{10}g \lor a_{01}x^m \lor \ldots \lor a_{kl}g^k(x^m)^l,$$

причем $a_{ij} > 0$ для некоторых $i \ge 0$ и $j \ge 1$, т. е. $n \ge i \deg g + jm \ge m$.

Обратно, пусть условие 2) выполняется. Тогда из (3.3), как было доказано выше, следует, что $\deg f \geq n$. Кроме того, $n \geqslant \deg f$, в связи с тем что если

$$f = a_m x^m \vee ... \vee a_k x^k, \ a_m, a_k > 0, k > m \ge 0,$$

то для $g=a_mx^m\vee\dots a_k/2\cdot x^k$ имеем $f=g\vee a^kx^k\in [g]\vee [x^k]$ и $[f]\nsubseteq [g]$. Значит, $\deg f=n$. \square

Лемма 13. Справедливы следующие утверждения:

- 1) с. р. х. подалгебр $[a_1x \vee \ldots \vee a_mx^m \vee a_nx^n]$, где $a_m, a_n > 0$ и $n > m \ge 1$;
- 2) для любой подалгебры $[f] = [a_1 x \vee ... \vee a_m x^m \vee a_n x^n]$, где $a_m, a_n > 0$ и $n > m \ge 1$, с. р. х. подалгебры $[a_1 x \vee ... \vee a_m x^m]$.

Доказательство. 1) Искомыми будут подалгебры [f], где mindeg $f \ge 1$ и $\lg f \ge 2$, р. х. которых существует в силу лемм 7 и 10.

- 2) Пусть $[f] = [a_1x \vee \ldots \vee a_mx^m \vee a_nx^n]$, где $a_m, a_n > 0$ и $n > m \geq 1$; в частности, $l \notin \operatorname{Supp} f$ для всех l, n > l > m. В силу лемм 7 и 12 для подалгебры [f] с. р. х. подалгебры $[x^n]$ и множества подалгебр $M = \{[g] \colon n > \deg g \geq \min \deg g \geq 1\}$. Докажем, что для любой подалгебры $[g] \in M$ равносильны следующие условия:
 - 1) $[g] = [a_1x \vee \ldots \vee a_mx^m];$
 - 2) $[f] \subseteq [g] \vee [x^n]$ и $\deg g \ge \deg h$ для любой такой подалгебры $[h] \in M$, что $[f] \subseteq [h] \vee [x^n]$. Если $[g] = [a_1 x \vee \ldots \vee a_m x^m]$, то $[g] \in M$ и $[f] \subseteq [g] \vee [x^n]$, так как $f = (a_1 x \vee \ldots \vee a_m x^m) \vee x^n$. Допустим, $[f] \subseteq [h] \vee [x^n]$ для некоторой подалгебры $[h] \in M$. Тогда многочлен f имеет вид

$$f = b_1 h \vee ... \vee b_k h^k \vee b x^n, \ b_k, b > 0, k \ge 1,$$
 (3.4)

так как mindeg $f \ge 1$ и deg $h^i(x^n)^j > n$ для любых $i, j \in \mathbb{N}$.

Допустим, $\deg h > m$. Если $\lg h = 1$, то

$$\operatorname{mindeg}(b_1 h \vee \ldots \vee b_k h^k) \geq \operatorname{mindeg} h = \operatorname{deg} h > m \geq \operatorname{mindeg} f;$$

противоречие с (3.4). Значит, $lp h \ge 2$.

Если k = 1, то $\deg h \in \operatorname{Supp} h \subseteq \operatorname{Supp} f$; противоречие с $n > \deg h > m$.

Если $k \geq 2$, то в силу (3.4), mindeg $h \geq 1$ и $n > \deg h > m$ имеем

$$k \operatorname{deg} h = n$$
, mindeg $h + (k-1)\operatorname{deg} h \in \operatorname{Supp} b_k h^k \subseteq \operatorname{Supp} (b_1 h \vee \ldots \vee b_k h^k) \subseteq \operatorname{Supp} f$;

противоречие с $n > \min \deg h + (k-1) \deg h > m$. Значит, $m \ge \deg h$ и условие 2) выполняется.

Обратно, пусть условие 2) выполняется. Положим $h = a_1 x \vee ... \vee a_m x^m$. Тогда $[h] \in M$ и $[f] \subseteq [h] \vee [x^n]$, так как $f = h \vee a_n x^n$. Отсюда $\deg g \geq m$. Кроме того, поскольку $[f] \subseteq [g] \vee [x^n]$, mindeg $f \geq 1$ и $\deg g^i(x^n)^j > n$ для любых $i, j \in \mathbb{N}$, многочлен f имеет вид

$$f = b_1 g \vee \dots \vee b_k g^k \vee b x^n, \ b_k, b > 0, k \ge 1.$$
 (3.5)

Если k = 1, то из $\deg g < n$ и (3.5) находим, что $b_1 > 0$ и $[g] = [b_1 g] = [a_1 x \lor \ldots \lor a_m x^m]$. Допустим, $k \ge 2$. Если $\lg g \ge 2$, то в силу (3.5), $n > \deg g \ge m$ и mindeg $g \ge 1$ получаем

$$k \deg g = n$$
, mindeg $g + (k-1) \deg g \in \operatorname{Supp} b_k g \subseteq \operatorname{Supp} (b_1 g \vee \ldots \vee b_k g^k) \subseteq \operatorname{Supp} f$;

противоречие с $n > \min \deg q + (k-1) \deg q > m$. Значит, $\lg q = 1$. Поскольку mindeg $q \ge 1$,

$$\operatorname{mindeg}(b_2g^2 \vee \ldots \vee b_kg^k) \geq \operatorname{mindeg} g^2 > \operatorname{mindeg} g = \deg g \geq m.$$

Отсюда и из (3.5) находим, что
$$b_1 > 0$$
 и $[g] = [b_1 g] = [a_1 x \lor \dots \lor a_m x^m].$

Пемма 14. Для любой подалгебры [f] c. p. x. Supp f u, следовательно, mindeg f u lp f.

Доказательство. Для $[f] = \mathbb{R}_+^{\vee}$ утверждение тривиально. Пусть $[f] \neq \mathbb{R}_+^{\vee}$. Тогда многочлен f имеет вид

$$f = a_{i_1} x^{i_1} \vee \ldots \vee a_{i_n} x^{i_n}, \ a_{i_1}, \ldots, a_{i_n} > 0, \ i_n > \ldots > i_1 \ge 0, \ n \ge 1.$$

1. Если mindeg $f \ge 1$ (см. лемму 7), то по лемме 13 для подалгебры [f] с. р. х. подалгебр

$$[f_{n-1}] = [a_{i_1}x^{i_1} \lor \dots \lor a_{i_{n-1}}x^{i_{n-1}}], \dots, [f_{i_1}] = [a_{i_1}x^{i_1}].$$

Поскольку Supp $f = \{\deg f, \deg f_{n-1}, \ldots, \deg f_{i_1}\}$, по лемме 12 с. р. х. множества Supp f.

2. Пусть mindeg f=0. Тогда по лемме 9 для подалгебры [f] с. р. х. подалгебры $[g]=\left[a_{i_1}x^{i_2}\lor\ldots\lor a_{i_n}x^{i_n}\right]$. Для подалгебры [g] согласно п. 1 с. р. х. множество Supp g. Значит, множество Supp f имеет р. х., так как Supp $f=\{0\}\cup \operatorname{Supp} g$.

Лемма 15. Для любой подалгебры $[f] \neq \mathbb{R}_+^{\vee}$ и любого $m \in \mathbb{Z}, m \geqslant -\text{mindeg } f, c. p. x.$ подалгебры $[fx^m]$.

Доказательство. Для $\lg f=1$ утверждение верно по лемме 11. Пусть $\lg f\geqslant 2$.

1. Допустим, $m \geqslant 1 + \deg f$ (см. лемму 12). Поскольку $[f] \neq \mathbb{R}_+^{\vee}$ и $m \geqslant 1 + \deg f$,

mindeg
$$fx^m > \deg f$$
, lp $f^i > \operatorname{lp} fx^m$ при $i \ge 2$, $\deg x^{jm} > \deg fx^m$ при $j \ge 2$. (3.6)

Докажем, что для произвольной подалгебры [g] равенство $[g] = [fx^m]$ равносильно условию

Supp
$$g = \text{Supp } fx^m$$
, $[g] \subseteq [f] \vee [x^m]$, $[g] \nsubseteq [a_0 \vee f] \vee [x^m]$ для всех $a_0 > 0$, (3.7)

которое является решеточным в силу лемм 1 и 14.

Допустим, $[g] = [fx^m]$, но условие (3.7) не выполняется. Тогда $[g] \subseteq [a_0 \vee f] \vee [x^m]$ для некоторого $a_0 > 0$, так как Supp $g = \text{Supp } fx^m$ и $[g] \subseteq [f] \vee [x^m]$. Из (3.6) и $[fx^m] \subseteq [a_0 \vee f] \vee [x^m]$ находим, что $fx^m = ax^m \vee b(a_0 \vee f)x^m$ для некоторых $a \ge 0$ и b > 0. Отсюда $f = a \vee b(a_0 \vee f)$ или, что равносильно, $f \in \mathbb{R}_+^\vee$; противоречие с $[f] \ne \mathbb{R}_+^\vee$. Значит, условие (3.7) выполняется.

Обратно, пусть условие (3.7) выполняется. Вместе с (3.6) это означает, что $g = ax^m \vee bfx^m$ для некоторых $a \geq 0$ и b > 0. Если a > 0, то $[g] \subseteq [a/b \vee f] \vee [x^m]$, так как $g = b(a/b \vee f)x^m$; противоречие с условием (3.7). Отсюда, a = 0, т.е. $[g] = [fx^m]$.

2. Пусть $m \ge -$ mindeg f. По лемме 14 с. р. х. множества подалгебр

$$M = \{ [g] : \deg g = m + \deg f, \lg g \ge 2 \}.$$

Остается заметить, что по лемме 4 для произвольной подалгебры [g] равенство $[g] = [fx^m]$ равносильно равенству $[gx^{1+m+3\deg f}] = [fx^{1+2m+3\deg f}]$, которое имеет р. х. согласно п. 1, так как $1+m+3\deg f>1+\deg g=1+m+\deg f$ и $1+2m+3\deg f\geq 1+\deg f$.

Запись $A_1, \ldots, A_m \xrightarrow{P_1, \ldots, P_n} B_1, \ldots, B_k$ будет означать, что для объектов A_1, \ldots, A_m в силу утверждений P_1, \ldots, P_n существует решеточная характеризация объектов B_1, \ldots, B_k . В качестве объектов будут выступать не только подалгебры, но и свойства подалгебр или функций.

Лемма 16. Справедливы следующие утверждения:

- 1) для любой подалгебры $[f] = [a_0 \vee a_1 x \vee \ldots \vee a_m x^m \vee a_n x^n]$, где $a_n, a_m > 0$ и $n > m \ge 0$, $c. p. x. подалгебр <math>[a_0 \vee a_1 x \vee \ldots \vee a_m x^m]$ и $[a_m x^m \vee a_n x^n]$;
- 2) для любых подалгебр $[g] = [a_k x^k \vee ... \vee a_m x^m]$ и $[h] = [b_m x^m \vee b_n x^n]$, где $a_m, a_k, b_n, b_m > 0$ и $n > m > k \ge 0$, с. р. х. подалгебры $[a_k x^k \vee ... \vee a_m x^m \vee a_m (b_n/b_m) x^n]$.

Доказательство. 1) Положим $g = a_0 \lor a_1 x \lor ... \lor a_m x^m$. Тогда

$$[f] \xrightarrow{\text{лемма } 15} [fx] \xrightarrow{\text{лемма } 13} [gx] \xrightarrow{\text{лемма } 15} [(gx)x^{-1}] = [g].$$

Дадим р. х. подалгебры $[a_mx^m\vee a_nx^n]$. Пусть Supp $f=\{i_1,\ldots,i_k\}$, где $i_k>\ldots>i_1\geq 0$ и $k\geq 2$. Через $[f_{l,\ldots,k}]$, $1\leq l\leq k-1$, обозначим подалгебру $[f_{l,\ldots,k}]=[a_{i_l}x^{i_l}\vee\ldots\vee a_{i_k}x^{i_k}]$. Для подалгебры $[f_{l,\ldots,k}]$ с. р. х. подалгебры $[f_{l+1,\ldots,k}]$, так как

$$[f_{l,\dots,k}] \xrightarrow{\text{лемма 15}} [fx^{-i_l}] \xrightarrow{\text{лемма 13}} [f_{l+1,\dots,k}x^{-i_l}] \xrightarrow{\text{лемма 15}} [(f_{l+1,\dots,k}x^{-i_l})x^{i_l}] = [f_{l+1,\dots,k}]. \quad (3.8)$$

Значит,

$$[f] = [f_{1,\dots,k}] \xrightarrow{(3.8)} [f_{2,\dots,k}] \xrightarrow{(3.8)} \dots \xrightarrow{(3.8)} [f_{k-1,k}] = [a_m x^m \lor a_n x^n].$$

2) По лемме 14 с.р.х. множества подалгебр

$$M = \left\{ [c_k x^k \vee ... \vee c_m x^m \vee c_n x^n] : c_n, c_m, c_k > 0, \ n > m > k \ge 0 \right\}.$$

По лемме 4 для подалгебр [g], [h] и любой подалгебры $[c_k x^k \vee ... \vee c_m x^m \vee c_n x^n] \in M$ с. р. х. равенств $[g] = [c_k x^k \vee ... \vee c_m x^m]$ и $[h] = [c_m x^m \vee c_n x^n]$. Остается заметить, что по лемме 4

$$\begin{cases} [c_k x^k \vee \ldots \vee c_m x^m] = [g], \iff \\ [c_m x^m \vee c_n x^n] = [h] \end{cases} \Leftrightarrow$$

$$\begin{cases} c_k x^k \vee \ldots \vee c_m x^m = a(a_k x^k \vee \ldots \vee a_m x^m), & \text{для некоторых } a, b > 0 \iff \\ c_m x^m \vee c_n x^n = b(b_m x^m \vee b_n x^n) \end{cases}$$

$$c_k x^k \vee \ldots \vee c_m x^m \vee c_n x^n = a \left(a_k x^k \vee \ldots \vee a_m x^m \vee \frac{a_m b_n}{b_m} \cdot x^n \right) \text{ для некоторого } a > 0 \iff$$

$$[c_k x^k \vee \ldots \vee c_m x^m \vee c_n x^n] = \left[a_k x^k \vee \ldots \vee a_m x^m \vee \frac{a_m b_n}{b_m} \cdot x^n \right].$$

Пемма 17. Для любой подалгебры $[r \lor x], r > 0, u$ любого $n \in \mathbb{N}$ c. p. x. подалгебры $[r^n \lor x^n].$

Доказательство. Для n=1 утверждение очевидно.

Пусть $n\geqslant 2$. В силу леммы 14 достаточно показать, что для произвольной подалгебры $[r'\vee x^n],\ r'>0,$ равенство $r'=r^n$ выполняется тогда и только тогда, когда найдется такая подалгебра [f], Supp $f=\{1,\ldots,n-1\},$ что

$$[(r \vee x)^n x^{n+1}] \subseteq [(r' \vee x^n) x^{n+1}] \vee [f x^{n+1}]. \tag{3.9}$$

Допустим, $r'=r^n$. Положим $f=r^{n-1}x\vee\ldots\vee rx^{n-1}$. Тогда включение (3.9) верно, так как

$$(r \vee x)^n x^{n+1} = (r^n \vee r^{n-1} x \vee \ldots \vee r x^{n-1} \vee x^n) x^{n+1} = (r^n \vee x^n) x^{n+1} \vee f x^{n+1}.$$

Обратно, пусть условие (3.9) выполняется для некоторой подалгебры [f], где

$$f = a_1 x \vee \ldots \vee a_n x^n, \ a_1, \ldots, a_n > 0.$$

Заметим, что

$$\deg\left((r'\vee x^n)x^{n+1}\right)^i\left(fx^{n+1}\right)^j>2n+1$$
 для всех $i,j\in\mathbb{N}_0,\ i+j\geqslant 2.$

Поэтому из (3.9) находим, что

$$(r\vee x)^nx^{n+1}=a(r'\vee x^n)x^{n+1}\vee bfx^{n+1}$$
 для некоторых $a,b>0.$

Следовательно,

$$r^n \vee r^{n-1}x \vee \ldots \vee rx^{n-1} \vee x^n = a(r' \vee x^n) \vee b(a_1x \vee \ldots \vee a_{n-1}x^{n-1}).$$

Отсюда $ar' = r^n$ и a = 1. Значит, $r' = r^n$.

Пемма 18. Для любых подалгебр $[a \lor x], [b \lor x], \ b > a > 0, \ u$ любого $s \in \mathbb{R}$ имеем

$$[a \lor x], [b \lor x] \to [a^{1-s}b^s \lor x]. \tag{3.10}$$

Доказательство. Для s=0 и s=1 утверждение тривиально. Пусть $s \notin \{0,1\}$. Случай 1: $s=n/(n-1), n \geq 2$. Заметим, что

$$[a \vee x], [b \vee x] \xrightarrow{\text{леммы } 15,17} [(a \vee x)x^n] = [ax^n \vee x^{n+1}], [b^n \vee x^n],$$

$$[b^n \vee x^n] \xrightarrow{\text{следствие } 1} [r \vee x^n], r > b^n.$$

Кроме того, по лемме 14 с. р. х. множества подалгебр $M = \{[f]: \text{ Supp } f = \{n, n+1, 2n, 2n+1\}\}$. Значит, для произвольной подалгебры $[f] \in M$ следующее условие является решеточным:

$$[f] \subseteq [ax^n \vee x^{n+1}] \vee [b^n \vee x^n], \quad [f] \nsubseteq [ax^n \vee x^{n+1}] \vee [r \vee x^n] \text{ для всех } r > b^n. \tag{3.11}$$

Докажем, что с.р.х. равенства

$$[f] = [ab^n x^n \vee b^n x^{n+1} \vee ax^{2n} \vee x^{2n+1}], \tag{3.12}$$

а именно установим, что оно равносильно условию (3.11).

Пусть равенство (3.12) выполняется. Тогда $[f] \subseteq [ax^n \vee x^{n+1}] \vee [b^n \vee x^n]$, так как

$$ab^{n}x^{n} \vee b^{n}x^{n+1} \vee ax^{2n} \vee x^{2n+1} = (ax^{n} \vee x^{n+1})(b^{n} \vee x^{n}).$$

Допустим, что $[f] \subseteq [ax^n \lor x^{n+1}] \lor [r \lor x^n]$ для некоторого $r > b^n$. Заметим, что

$$\deg(ax^n \vee x^{n+1})^i > 2n+1$$
 для всех $i \ge 2, \ 0 \in \operatorname{Supp}(r \vee x^n)^j$ для всех $j \ge 1.$ (3.13)

Поэтому для некоторых c>0 и $d\geq 0$ имеем

$$ab^{n}x^{n} \vee b^{n}x^{n+1} \vee ax^{2n} \vee x^{2n+1} = c(ax^{n} \vee x^{n+1})(r \vee x^{n}) \vee d(ax^{n} \vee x^{n+1}).$$

Приравняв коэффициенты при x^{n+1} и x^{2n+1} , находим, что $b^n = cr \lor d$ и c = 1, т.е. $b^n = r \lor d$; противоречие с $r > b^n$. Значит, $[f] \nsubseteq [ax^n \lor x^{n+1}] \lor [r \lor x^n]$ для всех $r > b^n$.

Обратно, пусть условие (3.11) выполняется. Из $[f] \subseteq [ax^n \lor x^{n+1}] \lor [b^n \lor x^n]$, принимая во внимание Supp $f = \{n, n+1, 2n, 2n+1\}$ и (3.13), получаем, что многочлен f имеет вид

$$f = c(ax^n \vee x^{n+1})(b^n \vee x^n) \vee d(ax^n \vee x^{n+1}), \ c > 0, \ d \ge 0.$$

Отсюда $f = c(ax^n \vee x^{n+1})(d/c \vee b^n \vee x^n)$. Если $d/c > b^n$, то $[f] \subseteq [ax^n \vee x^{n+1}] \vee [r \vee x^n]$, где $r = d/c > b^n$; противоречие с (3.11). Следовательно, $d/c \leq b^n$, т. е.

$$[f] = [c(ax^n \lor x^{n+1})(b^n \lor x^n)] = [ab^n x^n \lor b^n x^{n+1} \lor ax^{2n} \lor x^{2n+1}].$$

Итак, $[a \lor x], [b \lor x] \to [ab^n x^n \lor b^n x^{n+1} \lor ax^{2n} \lor x^{2n+1}]$. Кроме того,

$$[ab^n x^n \vee b^n x^{n+1} \vee ax^{2n} \vee x^{2n+1}] \xrightarrow{\text{_{JEMMA 16}}} [ab^n x^n \vee b^n x^{n+1} \vee ax^{2n}] \xrightarrow{\text{_{JEMMA 16}}} [b^n x^{n+1} \vee ax^{2n}] \xrightarrow{\text{_{JEMMA 16}}} [(b^n x^{n+1} \vee ax^{2n}) x^{-(n+1)}] = [b^n \vee ax^{n-1}].$$

Следовательно, $[a\vee x], [b\vee x]\to [b^n\vee ax^{n-1}]$. Вместе с леммами 14 и 17 это означает, что с. р. х. такой подалгебры $[a_0\vee x], a_0>0$, что $[a_0^{n-1}\vee x^{n-1}]=[b^n\vee ax^{n-1}]$. По лемме 4

$$[a_0^{n-1} \vee x^{n-1}] = [b^n \vee ax^{n-1}] \Longleftrightarrow a_0^{n-1} = a^{-1}b^n \Longleftrightarrow [a_0 \vee x] = \left[a^{\frac{-1}{n-1}}b^{\frac{n}{n-1}} \vee x\right].$$

Утверждение (3.10) для s = n/(n-1) доказано.

C лучай 2: $s=m/n, m>n\geq 1$. Тогда $s=s_{n+1}\cdot\ldots\cdot s_m$, где $s_i=i/(i-1),\, i=n+1,\ldots,m,$ и

$$\begin{split} [a \vee x], [b \vee x] \xrightarrow{\text{случай 1}} [a \vee x], \left[a^{1-s_{n+1}}b^{s_{n+1}} \vee x\right] \xrightarrow{\text{случай 1}} \\ [a \vee x], \left[a^{1-s_{n+2}}\left(a^{1-s_{n+1}}b^{s_{n+1}}\right)^{s_{n+2}} \vee x\right] &= \left[a^{1-s_{n+1}s_{n+2}}b^{s_{n+1}s_{n+2}} \vee x\right] \xrightarrow{\text{случай 1}} \dots \xrightarrow{\text{случай 1}} \\ [a \vee x], \left[a^{1-s_{n+1}s_{n+2} \cdot \dots \cdot s_m}b^{s_{n+1}s_{n+2} \cdot \dots \cdot s_m} \vee x\right] &= \left[a^{1-s}b^s \vee x\right]. \end{split}$$

С л у ч а й 3: $s=m/n, n>m\geq 1.$ Положим t=n/m. По лемме 4 для любого r>0

$$[a^{1-t}r^t\vee x]=[b\vee x]\Longleftrightarrow a^{1-t}r^t=b\Longleftrightarrow r=a^{1-s}b^s.$$

Кроме того, по лемме 14 с. р. х. подалгебр $[r\vee x], r>0$, и t>1. Значит, с. р. х искомой подалгебры $[r\vee x], r=a^{1-s}b^s,$ — это такая подалгебра, что

$$[a \lor x], [r \lor x] \xrightarrow{\text{случай } 2} [a^{1-t}r^t \lor x].$$

С л у ч а й 4: s>0. Выберем произвольные последовательности $\{s_i^+\}_{i\in\mathbb{N}}$ и $\{s_i^-\}_{i\in\mathbb{N}}$ такие, что

$$s_i^-, s_i^+ \in \mathbb{Q}, \ 0 < s_i^- \le s \le s_i^+$$
 для всех $i \in \mathbb{N}, \ \lim_{i \to +\infty} s_i^- = \lim_{i \to +\infty} s_i^+ = s.$ (3.14)

Тогда

$$[a \lor x], [b \lor x] \xrightarrow{\text{случан 2, 3}} \left[a^{1-s_i^-} b^{s_i^-} \lor x \right], \left[a^{1-s_i^+} b^{s_i^+} \lor x \right], i \in \mathbb{N}. \tag{3.15}$$

По условию b > a > 0. Поэтому из (3.14) получаем

$$a^{1-s_i^-}b^{s_i^-} \le a^{1-s}b^s \le a^{1-s_i^+}b^{s_i^+}, \lim_{i \to +\infty} a^{1-s_i^-}b^{s_i^-} = \lim_{i \to +\infty} a^{1-s_i^+}b^{s_i^+} = a^{1-s}b^s.$$

Следовательно, в силу лемм 4 и 5 для произвольной подалгебры $[r \lor x]$ имеем

$$[r\vee x]=[a^{1-s}b^s\vee x]\Longleftrightarrow r=a^{1-s}b^s\Longleftrightarrow a^{1-s_i^-}b^{s_i^-}\leq r\leq a^{1-s_i^+}b^{s_i^+}\text{ для всех }i\in\mathbb{N}\Longleftrightarrow$$

$$[a^{1-s_i^+}b^{s_i^+}\vee x]\subseteq [r\vee x]\subseteq [a^{1-s_i^-}b^{s_i^-}\vee x]\text{ для всех }i\in\mathbb{N}.$$

Из (3.15) и лемм 5, 14 получаем, что с.р.х. искомой подалгебры $[a^{1-s}b^s\vee x]$ — это такая подалгебра $[r\vee x], r>0$, что

$$[a^{1-s_i^-}b^{s_i^-}\vee x]\subseteq [r\vee x]\subseteq [a^{1-s_i^+}b^{s_i^+}\vee x]$$
 для всех $i\in\mathbb{N}.$

Случай 5: s < 0. Положим t = 1 - 1/s. По лемме 4 для любого r, a > r > 0,

$$[r^{1-t}a^t \lor x] = [b \lor x] \Longleftrightarrow r^{1-t}a^t = b \Longleftrightarrow r = a^{1-s}b^s.$$

Кроме того, в силу лемм 5 и 14 с.р.х. подалгебр $[r \lor x], a > r > 0$, и t > 0. Значит, с.р.х искомой подалгебры $[r \lor x], r = a^{1-s}b^s$. Ей будет такая подалгебра, что

$$[r \lor x], [a \lor x] \xrightarrow{\text{случай } 4} [r^{1-t}a^t \lor x].$$

4. Завершение доказательства теоремы 2

По лемме 1 любой автоморфизм полукольца $\mathbb{R}_+^{\vee}[x]$ индуцирует автоморфизмы решеток его подалгебр $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$ и $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Докажем обратное утверждение.

Автоморфизмы решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Пусть α_1 — автоморфизм решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Тогда в силу лемм 5 и 14 для произвольных подалгебр $[b \vee x]$ и $[c \vee x]$, где c > b > 0, имеем

$$\alpha_1 \colon [b \lor x] \mapsto [d \lor x], \ [c \lor x] \mapsto [d \lor x]$$
 для некоторых $d > e > 0.$ (4.1)

Положим $s=\log_{c/b}e/d$ и $a=b^s/d$. Докажем, что $\alpha_1=\alpha_{1,\psi_{a,s}}$, где $s=\log_{c/b}e/d$ и $a=b^s/d$. Поскольку $A=\bigvee_{f\in A}[f]$ для любой подалгебры A с единицей, достаточно показать, что

$$\alpha_1([f]) = \alpha_{1,\psi_{a,s}}([f])$$
 для любой подалгебры $[f]$. (4.2)

Доказательство проведем индукцией по lp f.

Если $\operatorname{lp} f = 1$, то по лемме 14 для любых $a_0 \geq 0$, $a_n > 0$ и $n \geq 1$ найдутся такие $b_0 \geq 0$ и $b_n > 0$, что $\alpha_1([a_0]) = [b_0]$ и $\alpha_1([a_nx^n]) = [b_nx^n]$. Кроме того, $[b_0] = [a_0^s]$ и $[b_nx^n] = [a_n^s(ax)^n]$ по лемме 4. Значит, $\alpha_1([a_0]) = [a_0^s]$ и $\alpha_1([a_nx^n]) = [a_n^s(ax)^n]$ для любых $a_0 \geq 0$, $a_n > 0$ и $n \geq 1$.

Пусть $\operatorname{lp} f = 2$. Для любых $a_0, a_1 > 0$ найдется такое $t \in \mathbb{R}$, что $a_0/a_1 = b^{1-t}c^t$. Из (4.1) и леммы 18 получаем, что $\alpha_1([b^{1-t}c^t\vee x]) = ([d^{1-t}e^t\vee x])$. Кроме того, $[a_0/a_1\vee x] = ([a_0\vee a_1x])$ и $[a_0^s/a_1^sa\vee x] = [a_0^s\vee a_1^s(ax)]$ по лемме 4, и $d^{1-t}e^t = a_0^s/a_1^sa$, так как $d = b^s/a$ и $e = c^s/a$. Отсюда $\alpha_1([a_0\vee a_1x]) = [a_0^s\vee a_1^s(ax)]$ для любых $a_0, a_1>0$. В частности, $\alpha_1\colon [a_0^{1/n}\vee a_1^{1/n}x]\mapsto [a_0^{s/n}\vee a_1^{s/n}(ax)]$ для любого $n\geq 1$. Следовательно, $\alpha_1\colon [a_0\vee a_1x^n]\mapsto [a_0^s\vee a_1^s(ax)^n]$ по лемме 17. Таким образом, $\alpha_1\colon [a_m\vee a_nx^{n-m}]\mapsto [a_m^s\vee a_n^s(ax)^{n-m}]$ для любых $a_m, a_n>0, n>m\geq 0$. Отсюда по лемме 15

$$\alpha_1 : [(a_m \vee a_n x^{n-m}) x^m] \mapsto [(a_m^s \vee a_n^s (ax)^{n-m}) x^m]$$
 для любых $a_m, a_n > 0, n > m \ge 0.$

Значит,

$$\alpha_1 \colon \left[a_m x^m \vee a_n x^n \right] \mapsto \left[a_m^s (ax)^m \vee a_n^s (ax)^n \right]$$
 для любых $a_m, a_n > 0, n > m \geq 0.$

Пусть утверждение (4.2) верно для всех подалгебр [f], $lp f \le l$, $l \ge 2$. Допустим,

$$[f] = [a_k x^k \vee ... \vee a_m x^m \vee a_n x^n], \ a_k, a_m, a_n > 0, \ n > m > k \ge 0, \ \text{lp } f = l + 1.$$

По индукционному предположению

$$\alpha_1 \colon [a_k x^k \vee \ldots \vee a_m x^m] \mapsto \left[a_k^s (ax)^k \vee \ldots \vee a_m^s (ax)^m \right], \ \left[a_m x^m \vee a_n x^n \right] \mapsto \left[a_m^s (ax)^m \vee a_n^s (ax)^n \right].$$

Таким образом, по лемме 16

$$\alpha_1 : [a_k x^k \vee \ldots \vee a_m x^m \vee a_n x^n] \mapsto [a_k^s (ax)^k \vee \ldots \vee a_m^s (ax)^m \vee a_n^s (ax)^n].$$

Автоморфизмы решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$. Пусть α — автоморфизм решетки $\mathbb{A}(\mathbb{R}_+^{\vee}[x])$. В силу леммы 2 ограничение α на решетку $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$ будет автоморфизмом решетки $\mathbb{A}_1(\mathbb{R}_+^{\vee}[x])$. Поэтому, как было доказано ранее, найдется такой автоморфизм $\psi_{a,s}$ полукольца $\mathbb{R}_+^{\vee}[x]$, что $\alpha([f]) = \alpha_{1,\psi_{a,s}}([f])$ для любой подалгебры [f]. Заметим, что $\alpha_{1,\psi_{a,s}}([f]] = \psi_{a,s}([f]) = \alpha_{\psi_{a,s}}([f])$. Следовательно,

$$\alpha([f]) = \alpha_{\psi_{a,s}}([f]]$$
 для любой подалгебры $[f].$ (4.3)

Докажем, что $\alpha = \alpha_{\psi_{a,s}}$. Поскольку $A = \bigvee_{f \in A} \langle f \rangle$ для любой подалгебры A, достаточно показать, что для любой подалгебры $\langle f \rangle$ имеем $\langle f_1 \rangle = \langle f_2 \rangle$, где $\alpha(\langle f \rangle) = \langle f_1 \rangle$ и $\alpha_{\psi_{a,s}}(\langle f \rangle) = \langle f_2 \rangle$.

Если $[f] \neq \mathbb{R}_+^{\vee}$, то $[f_1], [f_2] \neq \mathbb{R}_+^{\vee}$ в силу леммы 2. Кроме того, $[f_1] = [f_2]$ в силу (4.3). Значит, $\langle f_1 \rangle = \langle f_2 \rangle$, так как по лемме 4 равенства $[f_1] = [f_2]$ и $\langle f_1 \rangle = \langle f_2 \rangle$ равносильны.

Наконец, если $[f] = \mathbb{R}_+^{\vee}$, т. е. $\langle f \rangle = \langle 0 \rangle$ или $\langle f \rangle = \mathbb{R}_+^{\vee}$, то, очевидно, $\langle f_1 \rangle = \langle f_2 \rangle$. Теорема 2 доказана.

СПИСОК ЛИТЕРАТУРЫ

- 1. **Гельфанд И. М., Колмогоров А. Н.** О кольцах непрерывных функций на топологических пространствах // Докл. АН СССР. 1939. Т. 22. № 1. С. 11–15.
- 2. **E. Hewitt.** Rings of real-valued continuous functions. I // Trans. Amer. Math. Soc. 1948. Vol. 64, no. 1. P. 45–99. doi: 10.1090/S0002-9947-1948-0026239-9.
- 3. **Вечтомов Е. М.** Решетка подалгебр колец непрерывных функций и хьюиттовские пространства // Мат. заметки. 1997. Т. 62. № 5. С. 687–693.
- 4. Sidorov V. V. Determinability of semirings of continuous nonnegative functions with max-plus by the lattices of their subalgebras // Lobachevskii J. Math. 2019. Vol. 40. P. 90–100. doi: 10.1134/S1995080219010128.
- 5. **Сидоров В. В.** Автоморфизмы решётки всех подалгебр полукольца многочленов от одной переменной // Фундамент. и прикл. математика. 2012. Т. 17, вып. 3. С. 85–96.

Поступила 2.05.2020 После доработки 20.05.2020 Принята к публикации 1.06.2020

Сидоров Вадим Вениаминович канд. физ.-мат. наук, доцент Вятский государственный университет г. Киров e-mail: sedoy vadim@mail.ru

REFERENCES

- 1. Gelfand I.M., Kolmogorov A.N. On rings of continuous functions on topological spaces. *Dokl. Akad. Nauk SSSR*, 1939, vol. 22, no. 1, pp. 11–15.
- 2. Hewitt E. Rings of real-valued continuous functions. I. *Trans. Amer. Math. Soc.*, 1948, vol. 64, no. 1, pp. 45-99. doi: 10.1090/S0002-9947-1948-0026239-9.
- 3. Vechtomov E.M. Lattice of subalgebras of the ring of continuous functions and Hewitt spaces. *Math. Notes*, 1997, vol. 62, pp. 575–580. doi: 10.1007/BF02361295.
- 4. Sidorov V.V. Determinability of semirings of continuous nonnegative functions with maxplus by the lattices of their subalgebras. Lobachevskii J. Math., 2019, vol. 40, pp. 90–100. doi: 10.1134/S1995080219010128.
- 5. Sidorov V.V. Automorphisms of the lattice of all subalgebras of the semiring of polynomials in one variable. *J. Math. Sci.*, 2012, vol. 187, no. 2, pp. 169–176. doi: 10.1007/s10958-012-1060-4.

Received May 2, 2020 Revised May 20, 2020 Accepted June 1, 2020

Vadim Veniaminovich Sidorov, Cand. Sci. (Phys.-Math.), Vyatka State University, Kirov, 610000 Russia, e-mail: sedoy_vadim@mail.ru.

V. V. Sidorov. Automorphisms of the semiring of polynomials $\mathbb{R}_{+}^{\vee}[x]$ and lattices of its subalgebras, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 3, pp. 171–186.