ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2021, Vol. 313, Suppl. 1, pp. S6–S13. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2020, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Vol. 26, No. 2, pp. 47–55.

Best L^2 -Extension of Algebraic Polynomials from the Unit Euclidean Sphere to a Concentric Sphere

V. V. Arestov^{1,2,*} and A. A. Seleznev^{1,**}

Received January 10, 2020; revised February 10, 2020; accepted February 17, 2020

Abstract—We consider the problem of extending algebraic polynomials from the unit sphere of the Euclidean space of dimension $m \ge 2$ to a concentric sphere of radius $r \ne 1$ with the smallest value of the L^2 -norm. An extension of an arbitrary polynomial is found. As a result, we obtain the best extension of a class of polynomials of given degree $n \ge 1$ whose norms in the space L^2 on the unit sphere do not exceed 1. We show that the best extension equals r^n for r > 1 and r^{n-1} for 0 < r < 1. We describe the best extension method. A.V. Parfenenkov obtained in 2009 a similar result in the uniform norm on the plane (m = 2).

Keywords: polynomial, Euclidean sphere, L^2 -norm, best extension.

DOI: 10.1134/S0081543821030020

¹Ural Federal University, Yekaterinburg, 620000 Russia

²Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia

e-mail: *vitalii.arestov@urfu.ru, **misterion3000@gmail.com