ISSN 0081-5438, Proceedings of the Steklov Institute of Mathematics, 2021, Vol. 313, Suppl. 1, pp. S21-S32. © Pleiades Publishing, Ltd., 2021. Russian Text © The Authors, 2020, published in Trudy Instituta Matematiki i Mekhaniki UrO RAN, 2020, Vol. 26, No. 1, pp. 27-38.

A Trajectory Minimizing the Exposure of a Moving Object

V. I. Berdyshev¹ and V. B. Kostousov^{1,**}

Received December 25, 2019; revised January 23, 2020; accepted January 27, 2020

Abstract—A corridor Y for the motion of an object is given in the space $X = \mathbb{R}^N$ (N = 2, 3). A finite number of emitters s_i with fixed convex radiation cones $K(s_i)$ are located outside the corridor. The intensity of radiation F(y), y > 0, satisfies the condition $F(y) \ge \lambda F(\lambda y)$ for y > 0 and $\lambda > 1$. It is required to find a trajectory minimizing the value

$$J(\mathcal{T}) = \sum_{i} \int_{0}^{1} F(\|s_{i} - t(\tau)\|) d\tau$$

in the class of uniform motion trajectories $\mathcal{T} = \{t(\tau): 0 \leq \tau \leq 1, t(0) = t_*, t(1) = t^*\} \subset Y$, $t_*, t^* \in \partial Y, t_* \neq t^*$. We propose methods for the approximate construction of optimal trajectories in the case where the multiplicity of covering the corridor Y with the cones $K(s_i)$ is at most 2.

Keywords: navigation, optimal trajectory, irradiation, moving object.

DOI: 10.1134/S0081543821030044

¹Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia

e-mail: *bvi@imm.uran.ru, **vkost@imm.uran.ru