Inverse Problems in the Theory of Distance-Regular Graphs: Dual 2-Designs

I. N. Belousov ${ }^{1,2, *}$ and A. A. Makhnev ${ }^{1,2, * *}$
Received August 1, 2019; revised November 8, 2019; accepted November 25, 2019

Abstract

Let Γ be a distance-regular graph of diameter 3 with a strongly regular graph Γ_{3}. Finding the parameters of Γ_{3} from the intersection array of Γ is a direct problem, and finding the intersection array of Γ from the parameters of Γ_{3} is its inverse. The direct and inverse problems were solved by A.A. Makhnev and M.S. Nirova: if a graph Γ with intersection array $\left\{k, b_{1}, b_{2} ; 1, c_{2}, c_{3}\right\}$ has eigenvalue $\theta_{2}=-1$, then the graph complementary to Γ_{3} is pseudogeometric for $p G_{c_{3}}\left(k, b_{1} / c_{2}\right)$. Conversely, if Γ_{3} is a pseudo-geometric graph for $p G_{\alpha}(k, t)$, then Γ has intersection array $\left\{k, c_{2} t, k-\alpha+1 ; 1, c_{2}, \alpha\right\}$, where $k-\alpha+1 \leq c_{2} t<k$ and $1 \leq c_{2} \leq \alpha$. Distance-regular graphs Γ of diameter 3 such that the graph $\Gamma_{3}\left(\bar{\Gamma}_{3}\right)$ is pseudogeometric for a net or a generalized quadrangle were studied earlier. In this paper, we study intersection arrays of distance-regular graphs Γ of diameter 3 such that the graph $\Gamma_{3}\left(\bar{\Gamma}_{3}\right)$ is pseudogeometric for a dual 2-design $p G_{t+1}(l, t)$. New infinite families of feasible intersection arrays are found: $\left\{m\left(m^{2}-1\right), m^{2}(m-1), m^{2} ; 1,1,\left(m^{2}-1\right)(m-1)\right\},\left\{m(m+1),(m+2)(m-1), m+2 ; 1,1, m^{2}-1\right\}$, and $\left\{2 m(m-1),(2 m-1)(m-1), 2 m-1 ; 1,1,2(m-1)^{2}\right\}$, where $m \equiv \pm 1(\bmod 3)$. The known families of Steiner 2-designs are unitals, designs corresponding to projective planes of even order containing a hyperoval, designs of points and lines of projective spaces $P G(n, q)$, and designs of points and lines of affine spaces $A G(n, q)$. We find feasible intersection arrays of a distanceregular graph Γ of diameter 3 such that the graph $\Gamma_{3}\left(\bar{\Gamma}_{3}\right)$ is pseudogeometric for one of the known Steiner 2-designs.

Keywords: distance-regular graph, dual 2-design.
DOI: 10.1134/S0081543821030032

[^0]
[^0]: ${ }^{1}$ Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108 Russia
 ${ }^{2}$ Ural Federal University, Yekaterinburg, 620000 Russia
 e-mail: *i_belousov@mail.ru, ** makhnev@imm.uran.ru

