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Abstract—We study periodic groups of the form G = F ⋋ 〈a〉 with the conditions CF (a) = 1

and |a| = 4. The mapping a : F → F defined by the rule t → ta = a−1ta is a fixed-point-
free (regular) automorphism of the group F . In this case, a finite group F is solvable and
its commutator subgroup is nilpotent (Gorenstein and Herstein, 1961), and a locally finite
group F is solvable and its second commutator subgroup is contained in the center Z(F )
(Kovács, 1961). It is unknown whether a periodic group F is always locally finite (Shumyatsky’s
Question 12.100 from The Kourovka Notebook ). We establish the following properties of

groups. For π = π(F ) \ π(CF (a
2)), the group F is π-closed and the subgroup Oπ(F ) is

abelian and is contained in Z([a2, F ]) (Theorem 1). A group F without infinite elementary

abelian a2-admissible subgroups is locally finite (Theorem 2). In a nonlocally finite group F ,
there is a nonlocally finite a-admissible subgroup factorizable by two locally finite a-admissible
subgroups (Theorem 3). For any positive integer n divisible by an odd prime, we give examples
of nonlocally finite periodic groups with a regular automorphism of order n.
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