В.Г. Лабунец. Гиперкомплексные модели многоканальных изображений ... С. 69-83

УДК 621.391

MSC: 41A45, 42B05, 35S05, 58J40

DOI: 10.21538/0134-4889-2020-26-3-69-83

Работа выполнена при финансовой поддержке гранта РФФИ № 19-29-09022\19.

Мы предлагаем новый теоретический подход для обработки многомерных и многокомпонентных изображений, основанный на теории коммутативных гиперкомплексных алгебр, обобщающих алгебру комплексных чисел. Главная цель работы — показать, что коммутативные гиперкомплексные числа могут быть использованы при обработке многоканальных изображений в естественной и эффективной манере. Мы предполагаем, что мозг животных оперирует гиперкомплексными числами, когда обрабатывает многоканальные изображения, которые возникают на ретине глаза. В нашем подходе каждый многоканальный пиксель рассматривается не как K-мерный (K-D) вектор, а как K-D гиперкомплексное число, где K — число различных оптических каналов. Это создает эффективную математическую основу для различных функционально-числовых преобразований многоканальных изображений и инвариантного распознавания образов.

Ключевые слова: многоканальные изображения, гиперкомплексные алгебры, обработка изображений

СПИСОК ЛИТЕРАТУРЫ

1.   Cronin T. A retina with at least ten spectral types of photoreceptors in a mantis shrimp // Nature. 1989. Vol. 339. P. 137–140. doi: 10.1038/339137a0 

2.   Chang C. Hyperspectral data processing: Algorithm design and analysis. N Y: Wiley Press, 2013. 1164 p.

3.   Schowengerdt R. A. Remote sensing — Models and methods for image processing. N Y: Acad. Press, 1997. 558 p.

4.   Soifer V. A. Computer image processing. Part II: Methods and algorithms. Berlin: VDM, Verlag, 2010. 584 p.

5.   Luneburg R. K. The metric methods in binocular visual space // J. Opt. Soc. Amer. 1950. Vol. 40, no. 1. P. 627–642.

6.   Luneburg R. K. The metric methods in binocular visual // Studies and Essays. Courant Anniv. 1948. Vol. 11, № 1. P. 215–239.

7.   Labunets V. Clifford algebra as unified language for image processing and pattern recognition // Computational noncommutative algebra and applications / eds. J. Byrnes, G. Ostheimer. Dordrect; Boston; London: Kluwer Acad. Publ., 2003. P. 197–225. doi: 10.1007/1-4020-2307-3_8 

8.   Labunets V. G., Rundblad E. V., Astola J. Is the Brain a “Clifford algebra quantum computer”? Applied geometrical algebras in computer science and engineering / eds. L. Dorst, C. Doran, J. Lasenby. N Y: Birkhauser, 2002. P. 486–495. doi: 978-1-4612-0089-5_25 

9.   Labunets V., Labunets-Rundblad E. V. Algebra and geometry of color images // Proc. of the First Int. Workshop on Spectral Tecniques and Logic Design for Future Digital Systems / eds. J. Astola, R. Stancovic, Tampere: Tampere University Publ., 2000. P. 231–261.

10.   Doran C. J. L. Geometric algebra and its application to mathematical physics. Cambridge: Cambridge University Publ., 1994. 324 p.

11.   Greaves Ch. On algebraic triplets // Proc. Irisn Acad. 1847. Vol. 3. P. 51–108.

12.   Rundblad-Ostheimer E., Labunets V. Spatial-color Clifford algebras for invariant image recognition // Geometric computing with Clifford algebras / ed. G. Sommer. Berlin: Springer, 2001. P. 155–185. doi: 10.1007/978-3-662-04621-0_7 

13.   Rundblad-Ostheimer E., Nikitin I., Labunets V. Unified approach to Fourier-Clifford-Prometheus sequences, transforms and filter banks // Computational Noncommutative Algebra and Applications / eds. J. Byrnes, G. Ostheimer. Dordrect; Boston; London: Kluwer Acad. Publ., 2003. P. 389–400. doi: 10.1007/1-4020-2307-3_14 

14.   Rundblad-Ostheimer E., Maidan E. A., Novak P., Labunets V. G. Fast color Haar-Prometheus wavelet transforms for image processing // Computational Noncommutative Algebra and Applications / ed. J. Byrnes, G. Ostheimer. Dordrect; Boston; London: Kluwer Acad. Publ., 2003. P. 389–400. doi: 10.1007/1-4020-2307-3_15 

15.   Rundblad-Ostheimer E., Labunets V., Astola J. Is the visual cortex a “Fast Clifford algebra quantum computer”? // Clifford analysis and its applications / Mathematics, Physics and Chemistry. NATO Science Series. 2001. Vol. 25. P. 173–183. doi: 10.1007/978-94-010-0862-4_17 .

16.   Labunets V. G., Maidan A., Rundblad-Ostheimer E., Astola J. Colour triplet-valued wavelets and splines // Proc. of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat. No.01EX480). Pula, 2001. P. 535–541. doi: 10.1109/ISPA.2001.938687 

Поступила 12.05.2020

После доработки 10.06.2020

Принята к публикации 6.07.2020

Лабунец Валерий Григорьевич
д-р техн. наук, профессор
Уральский государственный лесотехнический университет
г. Екатеринбург
e-mail: vlabunets05@yahoo.com

Ссылка на статью: В.Г. Лабунец. Гиперкомплексные модели многоканальных изображений // Тр. Ин-та математики и механики УрО РАН. 2020. Т.26, № 3. С. 69-83

English

V.G. Labunets. Hypercomplex models of multichannel images

We present a new theoretical approach to the processing of multidimensional and multicomponent images based on the theory of commutative hypercomplex algebras, which generalize the algebra of complex numbers. The main goal of the paper is to show that commutative hypercomplex numbers can be used in multichannel image processing in a natural and effective manner. We suppose that animal brain operates hypercomplex numbers when processing multichannel retinal images. In our approach, each multichannel pixel is regarded as a K–D hypercomplex number rather than a K–D vector, where K is the number of different optical channels. This creates an effective mathematical basis for various function–number transformations of multichannel images and invariant pattern recognition.

Keywords: multichannel images, hypercomplex algebra, image processing

Received May 12, 2020

Revised June 10, 2020

Accepted July 6, 2020

Funding Agency: This work was supported by the Russian Foundation for Basic Research (project no. 19-29-09022\19.)

Valerii Grigor’evich Labunets, Dr. Techn. Sci., Prof., Ural State Forest Engineering University, Yekaterinburg, 620100 Russia, e-mail: vlabunets05@yahoo.com

Cite this article as: V.G. Labunets. Hypercomplex models of multichannel images, Trudy Instituta Matematiki i Mekhaniki URO RAN, 2020, vol. 26, no. 3, pp. 69–83.

[References -> on the "English" button bottom right]